#X02 Implementation of a Quasi-3D MMF to ACME

Poster TitleImplementation of a Quasi-3D Multiscale Modeling Framework to ACME
AuthorsCelal Konor, JoonHee Jung and David Randall
Group
Experiment
Poster CategoryFuture directions
Submission Typepresentation
Poster LinkPOSTER_ACME.pdf


Abstract


It is well recognized that the difficulty of properly simulating the effects of clouds and associated processes is one of the most significant limiting factors for global climate models. A large part of the problem is that the current climate models can not directly resolve or even permit clouds because of their low resolution. On the other hand, extensive climate simulations with global cloud-resolving models (GCRMs) will not be practical in the next decade. 

As an intermediate solution, the Multi-scale Modeling Framework (MMF) was introduced to global modeling. In an MMF, the cloud-scale processes are explicitly simulated by embedding a 2D CRM as a “super-parameterization (SP)” in each GCM grid column. This approach has shown its good ability to simulate various atmospheric phenomena that are closely linked to the cloud-scale processes, such as the diurnal cycle of precipitation, the Asian monsoon, and the Madden-Julian Oscillation. In spite of its encouraging performance in simulating these phenomena, however, the current MMF has inherent deficiencies. To mitigate the deficiencies of the current SP, the Q3D MMF has been introduced by Jung and Arakawa. The Q3D MMF is a major advance over the current SP: 1) The CRMs are not confined into the dynamical-core grid boxes. 2) The CRMs sense the three-dimensional large- and cloud-scale environment. 3) Two perpendicular sets of CRMs are used. 4) The Q3D MMF can simulate the vertical momentum transport due to both convection and gravity waves. 5) The CRMs also resolve the steep surface topography along the channel direction. Due to these features, the Q3D MMF is scale-aware, which means that it converges to a global CRM as the resolution of the GCM is increased.

The Q3D MMF version of ACME can bridge the gap between the much more expensive global cloud-resolving models and conventional models. Extensive climate simulations with GCRMs will not be practical in the next decade or more. During that time, the Q3D MMF can be used as the best affordable alternative to a GCRM. The Q3D version of ACME will be a cutting-edge tool for simulations of current and future climates, including especially the hydrologic cycle on local and global scales, and extreme precipitation events in mountainous regions.