A11: Cloud evaluation with COSP
Full Title | Understanding Changes in Cloud Simulations from E3SM Version 1 to Version 2 |
---|---|
First Author |
|
All Authors | Yuying Zhang, Shaocheng Xie, Yi Qin, Wuyin Lin, Jean-Christophe Golaz, Xue Zheng, Po-Lun Ma, Yun Qian, Qi Tang, Christopher R. Terai, and Meng Zhang |
Topic | Atmosphere |
Project | E3SM |
Abstract | This study documents clouds simulated by the Energy Exascale Earth System Model (E3SM) version 2 (E3SMv2) and attempts to understand what causes the model behavior change in clouds relative to E3SMv1. This is done by analyzing the last 30-year (1985-2014) data from the 165-year historical simulations using E3SMv1 and v2 and four sensitivity tests to isolate the impact of changes in model parameter choices in its turbulence, shallow convection, and cloud macrophysics parameterization (CLUBB), microphysical parameterization (MG2), and deep convection scheme (ZM), as well as model physics changes in convective triggering. It is shown that E3SMv2 significantly improves the simulation of subtropical coastal stratocumulus clouds (Sc) and clouds with optical depth larger than 3.6 over the stratocumulus to cumulus transition regimes, where Shortwave Cloud Radiative Effect (SWCRE) is also improved, and the Southern Ocean (SO) while seeing an overall slight degradation in low clouds over other tropical and subtropical oceans. The better performance in E3SMv1 over those regions is partially due to error compensation between its simulated optically thin and intermediate low clouds for which E3SMv2 actually improves simulation of optically intermediate low clouds. Sensitivity tests indicate that the changes in low clouds are primarily due to the tuning made in CLUBB. The impact of the ZM tuning is mainly on optically intermediate and thick high clouds, contributing to improved SWCRE and Longwave Cloud Radiative Effect (LWCRE). The impact of the MG2 tuning and the new convective trigger is primarily on the high latitudes and the Southern Ocean (SO). They have a relatively smaller impact on clouds than do the CLUBB and ZM tunings. This study offers additional insights about clouds simulated in E3SMv2 by utilizing multiple data sets and the COSP diagnostic tool as well as through sensitivity tests. The improved understanding will benefit the future E3SM developments. |
In-person | yes |
Poster | poster |
Discussion Link |
|