Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 5 Next »

The Design Document page provides a description of the algorithms, implementation and planned testing including unit, verification, validation and performance testing. Please read  Step 1.3 Performance Expectations that explains feature documentation requirements from the performance group point of view.

Design Document

Overview table for the owner and an approver of this feature

1.Description

Elevation Class Decomposition
2.OwnerSteve Ghan (Unlicensed)
3.Created
4.Equ(error)
5.Ver(error)
6.Perf(error)
7.Val(error)
8.Approver
9.Approved Date
 Click here for Table of Contents ...

Table of Contents

Title: Elevation Class Decomposition

Requirements and Design

ACME Atmosphere Group

Date: 9-10-15

Summary


This effort introduces elevation classes to the atmosphere and land physics modules in the ACME model. All of the atmospheric and land physics is applied to each of a modest set of elevation classes within each model grid cell. The number of elevation classes and their fractional area and mean elevation in each grid cell is read into the land and atmosphere models. The surface elevation is used to diagnose the vertical displacement of air parcels flowing through the grid cell, and conservation of energy and moisture is used to diagnose an orographic tendency for temperature and the tracers. Initially the land and atmosphere are assumed to use the same grid, which greatly simplifies coupling. The atmosphere and land history is written for each elevation class; this history can then be distributed according to a high-resolution surface elevation dataset, producing high resolution distributions of the simulated climate.

Implementation requires breaking the assumption that that atmospheric physics and dynamics are calculated on the same grid.

Requirements

Requirement: Apply all model physics to multiple subcolumns (elevation classes) within each grid cell

Date last modified: 9-10-15
Contributors: Steve Ghan (Unlicensed) Steve Goldhaber (Unlicensed) Teklu Tesfa Ruby Leung 

Requirement: Write all model history for all elevation classes.


Each requirement is to be listed under a ”section” heading, as there will be a one-to-one correspondence between requirements, design, proposed implementation and testing. Requirements should not discuss technical software issues, but rather focus on model capability. To the extent possible, requirements should be relatively independent of each other, thus allowing a clean design solution, implementation and testing plan.

 

Algorithmic Formulations

Design solution: short-description-of-proposed-solution-here

Date last modified:
Contributors: (add your name to this list if it does not appear)

 

For each requirement, there is a design solution that is intended to meet that requirement. Design solutions can include detailed technical discussions of PDEs, algorithms, solvers and similar, as well as technical discussion of performance issues. In general, this section should steer away from a detailed discussion of low-level software issues such as variable declarations, interfaces and sequencing.

 

Design and Implementation

Implementation: short-desciption-of-implementation-here

Date last modified: 
Contributors: (add your name to this list if it does not appear)

 

This section should detail the plan for implementing the design solution for requirement XXX. In general, this section is software-centric with a focus on software implementation. Pseudo code is appropriate in this section. Links to actual source code are appropriate. Project management items, such as svn branches, timelines and staffing are also appropriate. How do we typeset pseudo code?

 

Planned Verification and Unit Testing 

Verification and Unit Testing: short-desciption-of-testing-here

Date last modified:  
Contributors: (add your name to this list if it does not appear)

 

How will XXX be tested? i.e. how will be we know when we have met requirement XXX. Will these unit tests be included in the ongoing going forward?

Planned Validation Testing 

Validation Testing: short-desciption-of-testing-here

Date last modified:
Contributors: (add your name to this list if it does not appear)

 

How will XXX be tested? What observational or other dataset will be used?  i.e. how will be we know when we have met requirement XXX. Will these unit tests be included in the ongoing going forward?

Planned Performance Testing 

Performance Testing: short-desciption-of-testing-here

Date last modified:
Contributors: (add your name to this list if it does not appear)

 

How will XXX be tested? i.e. how will be we know when we have met requirement XXX. Will these unit tests be included in the ongoing going forward?

 


  • No labels