Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 7 Next »

Poster Title

Parametric sensitivity and uncertainty quantification in the version 1 of E3SM Atmosphere Model based on short Perturbed Parameters Ensemble simulations

AuthorsYun QianHui Wan, Ben Yang, Chris GolazBryce Harrop , Zhangshuan Hou, Vince LarsonRuby LeungGuangxing Lin (Unlicensed)Wuyin LinPo-Lun Ma, Hsi-Yen Ma, Phil Rasch (pnl.gov)Balwinder SinghHailong WangShaocheng Xie, and Kai Zhang
First AuthorYun Qian
Session TypeE3SM/Integrated Session
Session IDI6 and E9
Submission TypePoster
GroupWater Cycle and/or Atmosphere
ExperimentWater Cycle
Poster Link



Abstract

The atmospheric component of Energy Exascale Earth System Model (E3SM) version 1 (EAMv1) has included many new features in the physics parameterizations compared to its predecessors. Potential complex nonlinear interactions among the new features create a significant challenge for understanding the model behaviors and parameter tuning. Using the one-at-a-time method, the benefit of tuning one parameter may offset the benefit of tuning another parameter, or improvement in one target variable may lead to degradation in another target variable. To better understand the EAMv1 model behaviors and physics, we conducted a large number of short simulations (3 days) in which 18 parameters carefully selected from parameterizations of deep convection, shallow convection and cloud macrophysics and microphysics were perturbed simultaneously using the Latin Hypercube sampling method. From the Perturbed Parameters Ensemble (PPE) simulations and use of different skill score functions, we identified the most sensitive parameters, quantified how the model responds to changes of the parameters for both global mean and spatial distribution, and estimated the maximum likelihood of model parameter space for a number of important fidelity metrics. Comparison of the parametric sensitivity using simulations of two different lengths suggests that PPE using short simulations has some bearing on understanding parametric sensitivity of longer simulations. Results from this analysis provide a more comprehensive picture of the EAMv1 behavior. The difficulty in reducing biases in multiple variables simultaneously highlights the need of characterizing model structural uncertainty (so-called embedded errors) to inform future development efforts.


  • No labels