Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

ncclimo can (as of NCO 4.9.4) reshape timeseries with temporal resolution shorter than one-month, aka, high-frequency timeseries. For E3SM, this typically means timeseries with daily or finer (e.g., hourly) resolution, such as is often output in EAM/ELM h1-h4 datasets. EAM/ELM output these datasets with a fixed number of records (i.e., timesteps) per file. For example, fifteen daily timesteps or 24 hourly timesteps per file. A primary difficulty in processing such datasets is that their boundaries often do not coincide with the desired analysis interval, which might start and end on even boundaries of a month or year. Aligning timeseries to even month or year boundaries requires extra processing logic which users must invoke by setting the climatology mode option to high frequency splitting (hfs), i.e., --clm_md=hfs:

cd $drc_in;ls *.cam.h1.000?? > ~/input_list
ncclimo --clm_md=hfs --var=PRECT --ypf=1 --yr_srt=1 --yr_end=3 --map=map.nc --drc_out=${drc_out} < ~/input_list

The output of the above would be three files each containing the values of PRECT for exactly one year, no matter what the time resolution or the boundaries of the input. Omitting the --clm_md=hfs option for high-frequency timeseries would result in output segments not evenly aligned on year boundaries.

Climatology generation mode (produce monthly, seasonal, and annual climatologies from monthly-mean input data)

...

-A: the name of the account to charge for time used. This page may be useful for figuring that out if the above defaults don't work: Computational Resources /wiki/spaces/ED/pages/1114710

For a 12 node, MPI Job:

The above parallel approaches will fail when a single node lacks enough RAM (plus swap) to store all twelve monthly input files, plus extra RAM for computations. One should employ MPI multinode parallelism (-p mpi) on nodes with less RAM than 12*3*sizeof(monthly input).  The longest an ne120 climo will take is less than half an hour (~25 minutes on Edison or Rhea), so the simplest method to run MPI jobs is to request 12-interactive nodes using the above commands (though remember to add -p mpi), then execute the script at the command line. It is also possible, and sometimes preferable, to request non-interactive compute nodes in a batch queue. Executing an MPI-mode climo (on machines with job scheduling and, optimally, 12 available nodes) in a batch queue can be done in 2 commands. First, write an executable file which calls the ncclimo script with appropriate arguments. We do this below by echoing to a file ~/ncclimo.pbs, but you could also open an editor and copy the stuff in quotes below into a file and save it:

...