Skip to end of metadata
Go to start of metadata

You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 11 Next »

EAM has relied in two types of dissipation at the model top. With the lack of a robust non-reflecting boundary condition for the nonlinear dynamics, vertically propagating waves which should leave the model can instead be reflected off the model top. The sponge layer damps these waves to minimize the reflection. It also prevents pileup of KE at the model top.

The first sponge layer is Rayleigh damping, implemented in the physics and turned on in EAMv1 when we transitioned from 30 to 72L.

The second sponger layer is a Laplacian dissipation term implemented in the dycore.

Both approaches are inherited from CAM.

Rayleigh Damping

  • namelist parameter: raytay0 = 5.0 (default starting with v1). This appears to be in units of 1/days (so a damping timescale of 5 days)

  • Algorithm?

Laplacian smoothing:

  • namelist parameter: nu_top

  • Laplacian smoothing applied at the model top with coefficient nu_top*nu_top_scale(k)

  • preqx dycore (EAM v0,v1). Sponge layer modeled after that used by CAM-EUL

    • nu_top=2.5e5

    • nu_top_scale(1:nlev)=4,2,1,0,0,0….. (applied in top 3 model layers)

    • Laplacian term added to RHS of hyperviscosity operator

  • Theta dycore (EAM v2, SCREAM). Sponge layer modeled after CAM-FV ( Lauritzen et al., https://doi.org/10.1177/1094342011410088 )

    • nu_top = Resolution dependent. See https://acme-climate.atlassian.net/wiki/spaces/DOC/pages/1044644202/EAM+s+HOMME+dycore

    • Laplacian term applied independently from hyperviscosity, and with it’s own timestep controlled by hypervis_subcycle_tom. Default 1.

    • nu_top_scale(:) uses reference pressure based formula

    • Formula in terms of reference pressure computed from “eta” coordinate:

      • p_ratio = eta(1)/eta(k)

      • nu_top_scale = 16*( 1 ./ ( 1 + (p_ratio)^-2)). (mathematically equivalent to the 8*(1+ tanh(log(p_ratio))) formula used in CAM-FV)

      • where (nu_top_scale>8) nu_top_scale=8

      • where (nu_top_scale<0.15) nu_top_scale=0

    • This formula creates a sponge layer that is active from [ptop/10,ptop]. For EAM’s 72L and 80L configuration, ptop=0.1 mb (~60 km), meaning that the sponge layer starts at 1mb which might be too high. For SCREAM’s L128 configuration, ptop=2mb, so the sponge layer starts an 20mb, which might be too low. At NE256 and 72L, the model is unstable in the sponge layer.

  • Simplified option with control over sponge layer thickness:

    • To address the instabilities seen at high resolution, EAM v3 includes a new sponge layer option controlled by namelist variable tom_sponge_start, specified in mb

    • tom_sponge_start>0 will replace the default with a simplified version of the above formula that makes it easy to control the sponge layer thickness:

      • p_ratio = (tom_sponge_start/100) / eta(k)

      • nu_top_scale = .15 * p_ratio^2

      • tom_sponge_start=1.0 reproduces the E3SMv2 72L sponger layer. tom_sponge_start=20 reproduces the SCREAM 128L

Plots of the CAM-FV / EAMv2 sponge layer profile:

The plot shows the scaling factor, with a cutoff at 8.0. These values, multiplied by nu_top determine the sponge layer Laplacian coefficient as function of model layer k. The cutoff at 0.15 is shown via the black vertical line. The curves are shown extending beyond this in the plot, but in the model values below 0.15 are set to 0, disabling sponge layer in those layers. The “NEW” label shows the simplified option, with the tom_sponge_start=10. If the simplified version is set to start at 1mb (EAMv2) or 20mb (SCREAM), it provides a good approximation to the original formula.

Experiments

atm.log.* output:

EAM’s 72L configuration, Reference pressure for the first 6 levels:
1st column: interface pressure (Pa)
2nd column: midpoint pressure (Pa)
3rd column: layer thickness:

   1        10.0000
                           12.3825         4.7651
   2        14.7651
                           18.2829         7.0357
   3        21.8008
                           26.9949        10.3882
   4        32.1890
                           39.8582        15.3383
   5        47.5273
                           58.8509        22.6472
   6        70.1745
                           86.8939        33.4387

V2 sponge layer with EAM’s 72L configuration, as a function of model level k

   nu_scale_top            1   6.31593940963493
   nu_scale_top            2   3.68438395258885
   nu_scale_top            3   1.93067935592485
   nu_scale_top            4  0.947489176847158
   nu_scale_top            5  0.449005601189953
   nu_scale_top            6  0.209135512288980

72L, tom_sponge_start=1

   nu_scale_top            1   8.00000000000000
   nu_scale_top            2   4.48745361513254
   nu_scale_top            3   2.05839281223852
   nu_scale_top            4  0.944183791713705
   nu_scale_top            5  0.433096650568544
   nu_scale_top            6  0.198661225049463

72L, tom_sponge_start=5

  nu_scale_top            1   8.00000000000000
   nu_scale_top            2   8.00000000000000
   nu_scale_top            3   8.00000000000000
   nu_scale_top            4   8.00000000000000
   nu_scale_top            5   8.00000000000000
   nu_scale_top            6   4.96653062623658
   nu_scale_top            7   2.27814520652286
   nu_scale_top            8   1.04498410914579
   nu_scale_top            9  0.479333707632238
   nu_scale_top           10  0.219870140858203

SCREAM;s 128L configuration:

V2 sponge layer with SCREAM’s 128L configuration, as a function of model level k

 sponge layer nu_top viscosity scaling factor
   nu_scale_top            1   6.92938665202230
   nu_scale_top            2   5.24308179845195
   nu_scale_top            3   4.03996081024441
   nu_scale_top            4   3.10359169059755
   nu_scale_top            5   2.32272228570900
   nu_scale_top            6   1.70442520504892
   nu_scale_top            7   1.26207319730247
   nu_scale_top            8  0.952199042385671
   nu_scale_top            9  0.717276924434574
   nu_scale_top           10  0.536309905915625
   nu_scale_top           11  0.404311076629692
   nu_scale_top           12  0.311695543485728
   nu_scale_top           13  0.242880418339046
   nu_scale_top           14  0.189128525227522
   nlev_tom           14

  • No labels