First release of version 3.0 of the Energy Exascale Earth System Model

Default grid configuration for the low-resolution configuration of v3 is a “trigrid” consisting of

The following compsets are supported at the low-resolution detailed above: F1850, F1950, F2010, F20TR, WCYCL1850, WCYCL1950, and WCYCL20TR

The atmospheric component remains EAM. Its vertical resolution has been increased from 72 layers in version 2 to 80 layers in version 3. Atmospheric physics have had significant additions and changes since version 2:

The EAMxx (aka SCREAM) code is included as an optional atmosphere component in v3. Configurations with EAMxx are not yet supported.

The land component is ELM. The default configuration for ELM has been switched from vegetation leaf area being specified as a static monthly time series for each gridcell based on satellite data (the satellite phenology or SP mode) to a dynamic vegetation growth model that predicts leaf area dynamics and vegetation height in each plant functional type for each gridcell, and how those change over seasons and years in response to the simulated climate. This implementation uses prognostic coupled carbon, nitrogen, and phosphorus cycles (C-N-P) for vegetation and soil biogeochemistry. It uses the relative demand (RD) approach to resolve competition between plants and soil microbes for available nutrients. It uses the converging trophic cascade (CTC) model for organization of plant litter and soil organic matter pools. The model also includes:

The river model is still MOSART. An optional sediment scheme has been added

The ocean component remains MPAS-Ocean. Major change since version 2.1 include:

The sea-ice component, MPAS-Seaice, has had many improvements since 2.1:

The land-ice component remains MPAS-Albany-landIce (MALI). The version of MALI has been updated to include higher-order advection and time integration. The land-ice component is not yet supported in production configurations with v3.

Version 3 of E3SM includes as an optional wave model, WAVEWATCH III. This option is not yet supported in any production simulations.

The coupler remains cpl7/MCT.

The test suites were updated to support one ultra-low resolution: ne4pg2 with oQU480. ne11 and oQU240 are no longer tested. All tests with productions resolutions now use the v3 low resolution. The build system now follows CMake conventions more closely.

Default processor layouts for the low resolution configuration are available on Perlmutter and other DOE platofrms.