Snow Mods

N. Jeffery, E. Hunke, J. Wolfe, A. Turner June 17, 2019

Julian Day

Difference in Ice Volume (nSnowLayer-Default)

Difference in Sea Ice Extent (nSnowLayer-Default)

Possible Snow layer dependence of model

- Initialization of snow profiles
 - Default initializes T/q with constant value profiles
- Definition of the hs_ssl = Snow Surface Layer.
 - Default defines:
 - rnslyr = 1/nslyr
 - dz = hs*rnslyr. ==> snow layer thickness
 - For small enough snow thicknesses, hs_ssl is half of top snow layer
 - *ech: Tech note* this is highly resolution dependent
 - dzk(0) = min(hs_ssl,dz/c2). Where hs_ssl = 0.040_dbl_kind

Is hs_ssl = 0.04 m a physical quantity? Sort of. It is length scale for how quickly radiation penetrates in 1 hour. Thus hs_ssl can be tuned, though it is hard coded. How does changing hs_ssl effect the model?

I've tested hs_ssl = 0.04/nslyr so that we use the same fraction of the top layer and start changing hs_ssl with snow layer thickness for the same minimum snow thickness as the 1 snow layer simulation.

More about the SSL (Surface Scattering layer)

- For snow, this is granular and porous, the refractive index is 1 (like air) and so there is no refraction
- For ice, the ssl is also granular an porous. However, below this layer ice has a refractive index of 1.31 and so refraction does occur (this additional layer in the ice is the Fresnel layer)
 - *Radiation absorbed in the snow ssl is used for surface heating, while that absorbed in the remaining snow layers is for internal heating.
- 0.04 m comes because for snow thermal conductivity, density, and heat capacity identical to sea ice, the thermal penetration depth for one hour flux exchange is 0.04 m ...
- What is the impact of hs_ssl = 0.04/nslyr? For more layers, have a smaller ssl so that the ssl is fixed for the same snow thickness regardless of the number of layers.

Snow Modifications

- Effective snow grain radius (Rsnw): Default Scheme...
 - Delta-Eddington has optical parameters for the range ~5 to 2500 um
 - In the default scheme, Rsnw ranges (clear sky) from 125-1500 um with a tunable (R_snw = 1.5) linear increase with surface temperature (Tsfc).
 - When Tsfc <= -1.5oC, Rsnw = 125 um
 - When Tsfc >= 0oC, Rsnw = 1500 um
 - When -1.5oC < Tsf < 0oC there's a linear increase in Rsnw.

Cloudy sky, reduce by at most 0.8*Rsnw

Snow Modifications

- Dynamic Effective snow grain radius (Rsnw):
 - Define effective radius of fresh snow: Test Rsnw_fall = 54.4 um and 125 um
 - Snow ages and Rsnw increases with
 - Gradients in temperature (scheme used in clm)
 - Liquid water content (rate of volume growth increases with % liquid content up to 10%). (one parameter from experiment)

Set maximum Rsnw_tmax = 2800 um.

