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What is Portable C++

e |tisa C++library, not a separate language or language extension

It uses the same information you already give in non-parallel code

You can pass code as an objectin C++

That code, along with information about your loops, is sent to a backend
— CUDA, HIP, OpenMP, SYCL, etc.

A single source code runs in parallel on many different hardware backends

Portable C++ libraries often come with other features
— Multi-dimensional arrays

- Ways to handle race conditions (reductions, atomics, etc.)

- Ways to manage data between two different devices
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What is Portable C++?

e Just a C++ library, not a separate language or a language extension

e Based on the “kernel” paradigm (CUDA and HIP):

- A kernel performs work on a single thread
- Let the launcher know how many threads to launch

- Requires no more work or information than you're already used to providing

I$acc parallel loop collapse(4)
do 1 =1 , numState
do k =1, nz
do j =1, ny
do1=1, nx

Loops define the
threading

stateTend(i,j,k,1) = - ( stateFluxLimits(i+1,j,k,1) -
stateFluxLimits(i ,j,k,1) ) / dx;

enddo
enddo
enddo
enddo

%OAK RIDGE
Nat

ional Laboratory

Kernelis the loop
body




The Core of Portable C++

// for (int 1=0; 1 < numState; 1++) {

// for (int k=0; k < nz; k++) {

Threading

// for (int j=0; j < ny; j++) {
// for (int i=0; i < nx; i++) {
parallel for(|Bounds<4>(numState,nz,ny,nx) ,

YAKL_LAMBDA(int 1, int k, int j, int 1i)|{

Kernel
stateTend(1l,k,j,1) = - ( stateFluxLimits(1l,k,j,i+1l) - ////,
stateFluxLimits(1l,k,j,i ) ) / dx;

1)
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The Core of Portable C++

o« C++ can pass code as an object

// for (int 1=0; 1 < numState; 1++) {

// for (int k=0; k < nz; k++) {

// for (int j=0; j < ny; j++) {

// for (int i=0; i < nx; i++) {

parallel for( Bounds<4>(numState,nz,ny,nx) ,

YAKL LAMBDA(int 1, int k, int j, int i) {

stateTend(1l,k,j,1) = - ( stateFluxLimits(1l,k,j,i+1l) -
stateFluxLimits(1l,k,j,i ) ) / dx;

})s
o C++ "lambdas” convertcode into a class object for you

e YOU can then pass the code to whatever backend you want
- Ypardllel_for” can launch with CUDA, HIP, OpenMP, OpenMP 4.5+, SYCL, etc.

e Just as flexible and generic as directives
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Yet Another Kernel Launcher (YAKL)

o C++ portability library emphasizing simplicity and porting Fortran code to C++
- https://github.com/mrnorman/Y AKL

Currently supports:

— CUDA (Nvidia GPUs)

— HIP (AMD GPUs)

— SYCL (Intel GPUs)

— CPUs in serial and with OpenMP CPU threading
— OpenMP target offload (in progress)

YAKL started as a stop gap while HIP was unsupported by Kokkos

Turned intfo a helpful avenue to handling large Fortran codes

YAKL is quite small (8K lines of code), developed with < 1 FTE total effort

%OAK RIDGE
Nat

ional Laboratory



https://github.com/mrnorman/YAKL

YAKL Features

o parallel_for kernel launchers
o Multi-dimensional arrays (dynamic and static) in C and Fortran styles
* Functionsto move data between host and GPU memory spaces

o An efficient non-blocking pool allocator for cheap allocation / free
— With fortran bindings to share data with Fortran codes

o Atfomic and reduction operators for race condifions

e Synchronization for asynchronous work

e Limited Fortran intrinsicslibrary (minval, sum, size, allocated, pack, etc.)
« NetCDF and PNetCDF I/O and automated fimers
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Example YAKL Conversion (Fortran Code)

function max_stable_dt(height, u, v, cfl, grav, dx, dy) result(dt)

real(8), dimension(:,:), intent(in) :: height, u, v

real (8) , intent(in) :: cfl, grav, dx, dy
real(8) c: dt

integer :: i, j, nx, ny

real(8) :: gw, dtloc, eps
nx = size(height,1)
ny = size(height,?2)
dt = huge(height) ! Initialize to a large wvalue
eps = epsilon(height) ! To avoid division by zero
!$acc parallel loop collapse(2) present(height,u,v) reduction(min:dt)
do j =1, ny
doi=1, nx
gw = sqrt(grav * height(i,j)) ! Speed of gravity waves
! Compute local mazimum stable time step
dtloc = min( cfl * dx / ( abs(u(i,j)) + gw + eps ) , &
cfl * dy / ( abs(v(i,j)) + gw + eps ) )
! Compute global minimum of the local mazimum stable time steps
dt = min( dt , dtloc )
enddo
enddo
endfunction max_stable_dt

%OAK RIDGE

National Laboratory




Example YAKL Conversion (YAKL Code - Fortran-style)

// The lines before the function would be placed in a header file somewhere else
// using and typedef allow the latter code to be more readable, hiding template expressions and namespaces
using yakl::fortran: :Bounds;
using yakl::fortran::parallel_for;
using yakl::intrinsics::minval;
typedef double real;
typedef yakl::Array<real const,2,yakl::memDevice,yakl::sytleFortran> realConst2d; // intent(in)
typedef yakl::Array<real »2,yakl: :memDevice,yakl: :sytleFortran> real2d; // intent (inout)
// Here begins the main user-level YAKL code:
real max_stable_dt(realConst2d height, realConst2d u, realConst2d v,
real cfl, real grav, real dx, real dy) {

size(height,1);
int ny = size(height,2);
real eps = epsilon(height); // To avoid division by zero
real2d dt2d("dt2d",nx,ny); // Allocate an array to store the local maz stable time steps
// do j =1, ny
// do 1 =1, nzx
parallel_for( "Max stable timestep" , Bounds<2>(ny,nx) , YAKL_LAMBDA (int j, int i) {

real gw = sqrt(grav * height(i,j)); // Speed of gravity waves

// Compute local mazimum stable time step

dt2d(i,j) = min( cfl * dx / ( abs(u(i,j)) + gw + eps ) ,

cfl * dy / ( abs(v(i,j)) + gw + eps ) );

int nx

D;
// With the local maz stable time steps stored, compute the minimum among all of them
return minval( dt2d4 );

1
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Codes Developed or Ported with YAKL

1. System for Aimsopheric Modeling (SAM)

2. Portable Atmosphere Model (PAM)

3. RRTMGP radiation code

4. "AWFL Shallow" Shallow-Water Model

5. MiniWeather mini-app (github.com/mrnorman/miniWeather)
6

. Preliminary investigations into using YAKL for MPAS-O
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