gOAK RIDGE

National Laboratory

Introduction to the YAKL
C++ Portability Library

Matt Norman

E3SM All Hands Meeting, March 3, 2022

ORNL is managed by UT-Battelle, LLC for the US Department of Energy g- o0 DEPARTMENT OF
NOF/

/ENERGY

Acknowledgements

e Thisresearch used resources of the Oak Ridge Leadership Computing Facility
at the Oak Ridge National Laboratory, which is supported by the Office of

Science of the U.S. Department of Energy under Contract No. DE-ACO5-
O0OR22725.

e Thisresearch was supported by the Exascale Computing Project (17-SC-20-
SC), ajoint project of the U.S. Department of Energy’s Office of Science and
National Nuclear Security Administration, responsible for delivering a capable
exascale ecosystem, including software, applications, and hardware
technology, to support the nation’s exascale computing imperafive.

%OAK RIDGE

National Laboratory

What is Portable C++

e |tisa C++library, not a separate language or language extension

It uses the same information you already give in non-parallel code

You can pass code as an objectin C++

That code, along with information about your loops, is sent to a backend
— CUDA, HIP, OpenMP, SYCL, etc.

A single source code runs in parallel on many different hardware backends

Portable C++ libraries often come with other features
— Multi-dimensional arrays

- Ways to handle race conditions (reductions, atomics, etc.)

- Ways to manage data between two different devices

%OAK RIDGE

National Laboratory

What is Portable C++?

e Just a C++ library, not a separate language or a language extension

e Based on the “kernel” paradigm (CUDA and HIP):

- A kernel performs work on a single thread
- Let the launcher know how many threads to launch

- Requires no more work or information than you're already used to providing

I$acc parallel loop collapse(4)
do 1 =1 , numState
do k =1, nz
do j =1, ny
do1=1, nx

Loops define the
threading

stateTend(i,j,k,1) = - (stateFluxLimits(i+1,j,k,1) -
stateFluxLimits(i ,j,k,1)) / dx;

enddo
enddo
enddo
enddo

%OAK RIDGE
Nat

ional Laboratory

Kernelis the loop
body

The Core of Portable C++

// for (int 1=0; 1 < numState; 1++) {

// for (int k=0; k < nz; k++) {

Threading

// for (int j=0; j < ny; j++) {
// for (int i=0; i < nx; i++) {
parallel for(|Bounds<4>(numState,nz,ny,nx) ,

YAKL_LAMBDA(int 1, int k, int j, int 1i)|{

Kernel
stateTend(1l,k,j,1) = - (stateFluxLimits(1l,k,j,i+1l) - ////,
stateFluxLimits(1l,k,j,i)) / dx;

1)

%OAK RIDGE

National Laboratory

The Core of Portable C++

o« C++ can pass code as an object

// for (int 1=0; 1 < numState; 1++) {

// for (int k=0; k < nz; k++) {

// for (int j=0; j < ny; j++) {

// for (int i=0; i < nx; i++) {

parallel for(Bounds<4>(numState,nz,ny,nx) ,

YAKL LAMBDA(int 1, int k, int j, int i) {

stateTend(1l,k,j,1) = - (stateFluxLimits(1l,k,j,i+1l) -
stateFluxLimits(1l,k,j,i)) / dx;

})s
o C++ "lambdas” convertcode into a class object for you

e YOU can then pass the code to whatever backend you want
- Ypardllel_for” can launch with CUDA, HIP, OpenMP, OpenMP 4.5+, SYCL, etc.

e Just as flexible and generic as directives

%OAK RIDGE
Nat

ional Laboratory

Yet Another Kernel Launcher (YAKL)

o C++ portability library emphasizing simplicity and porting Fortran code to C++
- https://github.com/mrnorman/Y AKL

Currently supports:

— CUDA (Nvidia GPUs)

— HIP (AMD GPUs)

— SYCL (Intel GPUs)

— CPUs in serial and with OpenMP CPU threading
— OpenMP target offload (in progress)

YAKL started as a stop gap while HIP was unsupported by Kokkos

Turned intfo a helpful avenue to handling large Fortran codes

YAKL is quite small (8K lines of code), developed with < 1 FTE total effort

%OAK RIDGE
Nat

ional Laboratory

https://github.com/mrnorman/YAKL

YAKL Features

o parallel_for kernel launchers
o Multi-dimensional arrays (dynamic and static) in C and Fortran styles
* Functionsto move data between host and GPU memory spaces

o An efficient non-blocking pool allocator for cheap allocation / free
— With fortran bindings to share data with Fortran codes

o Atfomic and reduction operators for race condifions

e Synchronization for asynchronous work

e Limited Fortran intrinsicslibrary (minval, sum, size, allocated, pack, etc.)
« NetCDF and PNetCDF I/O and automated fimers

%OAK RIDGE
Nat

ional Laboratory

Example YAKL Conversion (Fortran Code)

function max_stable_dt(height, u, v, cfl, grav, dx, dy) result(dt)

real(8), dimension(:,:), intent(in) :: height, u, v

real (8) , intent(in) :: cfl, grav, dx, dy
real(8) c: dt

integer :: i, j, nx, ny

real(8) :: gw, dtloc, eps
nx = size(height,1)
ny = size(height,?2)
dt = huge(height) ! Initialize to a large wvalue
eps = epsilon(height) ! To avoid division by zero
!$acc parallel loop collapse(2) present(height,u,v) reduction(min:dt)
do j =1, ny
doi=1, nx
gw = sqrt(grav * height(i,j)) ! Speed of gravity waves
! Compute local mazimum stable time step
dtloc = min(cfl * dx / (abs(u(i,j)) + gw + eps) , &
cfl * dy / (abs(v(i,j)) + gw + eps))
! Compute global minimum of the local mazimum stable time steps
dt = min(dt , dtloc)
enddo
enddo
endfunction max_stable_dt

%OAK RIDGE

National Laboratory

Example YAKL Conversion (YAKL Code - Fortran-style)

// The lines before the function would be placed in a header file somewhere else
// using and typedef allow the latter code to be more readable, hiding template expressions and namespaces
using yakl::fortran: :Bounds;
using yakl::fortran::parallel_for;
using yakl::intrinsics::minval;
typedef double real;
typedef yakl::Array<real const,2,yakl::memDevice,yakl::sytleFortran> realConst2d; // intent(in)
typedef yakl::Array<real »2,yakl: :memDevice,yakl: :sytleFortran> real2d; // intent (inout)
// Here begins the main user-level YAKL code:
real max_stable_dt(realConst2d height, realConst2d u, realConst2d v,
real cfl, real grav, real dx, real dy) {

size(height,1);
int ny = size(height,2);
real eps = epsilon(height); // To avoid division by zero
real2d dt2d("dt2d",nx,ny); // Allocate an array to store the local maz stable time steps
// do j =1, ny
// do 1 =1, nzx
parallel_for("Max stable timestep" , Bounds<2>(ny,nx) , YAKL_LAMBDA (int j, int i) {

real gw = sqrt(grav * height(i,j)); // Speed of gravity waves

// Compute local mazimum stable time step

dt2d(i,j) = min(cfl * dx / (abs(u(i,j)) + gw + eps) ,

cfl * dy / (abs(v(i,j)) + gw + eps));

int nx

D;
// With the local maz stable time steps stored, compute the minimum among all of them
return minval(dt2d4);

1

%OAK RIDGE

National Laboratory

Codes Developed or Ported with YAKL

1. System for Aimsopheric Modeling (SAM)

2. Portable Atmosphere Model (PAM)

3. RRTMGP radiation code

4. "AWFL Shallow" Shallow-Water Model

5. MiniWeather mini-app (github.com/mrnorman/miniWeather)
6

. Preliminary investigations into using YAKL for MPAS-O

%OAK RIDGE
National Laboratory

