Capturing the Dynamics of Compound Flooding in E3SM

Gautam Bisht^{1*}

Mark Adams²⁺, Jed Brown³⁺, Albert Cowie⁶, Darren Engwirda⁴⁺, Dongyu Feng¹, Dalei Hao¹, Jeffrey Johnson⁵⁺, Matthew Knepley⁶⁺, Mukesh Kumar⁷⁺, Ashwin Raman⁷, Zeli Tan¹⁺, and Donghui Xu¹

 $^{1}\text{PNNL},~^{2}\text{LBNL},~^{3}\text{U}.$ Col., $^{4}\text{LANL},~^{5}\text{Cohere LLC},~^{6}\text{U}.$ Buffalo, $^{7}\text{U}.$ Alabama * PI, $^{+}$ co-PI

E3SM Webinar, 8 June, 2023

Research supported by BER and ASCR

Scientific Discovery through Advanced Computing

Scientific **D**iscovery through **A**dvanced **C**omputing (SciDAC)

Scientific **D**iscovery through **A**dvanced **C**omputing (SciDAC)

- Started in 2001 (1st)
- Re-competed in 2006 (2nd), 2011 (3rd), 2017 (4th), and 2022 (5th)
- Current SciDAC Institutes include:
 - 1. FASTMath
 - 2. RAPIDS
- Current SciDAC BER partnerships include 7 projects

Compound Flooding (CF)

Compound events are described as (IPCC2012)

- 1. simultaneous or successively occurring (climate-related) events such as simultaneous coastal and fluvial floods,
- 2. events combined with background conditions that augment their impacts such as rainfall on already saturated soils, or
- 3. a combination of (several) average values of climatic variables that result in an extreme event

CF and Its Impacts Pose a Significant Threat to Human and Natural Systems

https://www.usgs.gov/observatories/yvo/news/how-might-devastating-june-2022-floods-and-around-yellowstone-national-park

CF and Its Impacts Pose a Significant Threat to Human and Natural Systems

Several **S**cientific and **C**omputational **B**ottlenecks Exists in E3SM for Studying CF and Its Impacts

- $\blacktriangleright\,$ SB1: MOSART's assumption about subgrid structure limits the finest mesh resolution to be $\approx\,5{\rm km}$
- SB2: MOSART's existing physics has few limitations in accurately capturing CF events
 - Backwater propagation occurs only along river network
 - Instantaneous exchange of water between river channel and floodplain
 - Lack of density-dependent flow
- CB1: Single discretization implementation does not allow for the evaluation of numerical algorithms for solution accuracy and algorithmic scalability
- CB2: No support for heterogeneous computing architectures

Project Objectives (POs)

- PO1: Develop a rigorously verified and validated river dynamical core (RDycore) for E3SM to mechanistically model pluvial, fluvial, and coastal compound flooding and their impacts on sediment dynamics and riverine saltwater intrusion.
- PO2: Develop computationally efficient and scalable RDycore and assess its performance on heterogeneous computing architectures.
- PO3: Improve the predictive understanding of CF, SD, and rSWI due to the simultaneous but uncertain occurrence of multiple drivers of floods in a changing climate.

Research Foci

1. Set up an open source repository for the RDycore library with an initial implementation of the solver for shallow water equation and code verification was performed.

- 1. Set up an open source repository for the RDycore library with an initial implementation of the solver for shallow water equation and code verification was performed.
- 2. Identified and configured multiple models for benchmarking (OFM, PHIM3D, TELEMAC-MASCARET) and driving (ELM) RDycore.

- 1. Set up an open source repository for the RDycore library with an initial implementation of the solver for shallow water equation and code verification was performed.
- 2. Identified and configured multiple models for benchmarking (OFM, PHIM3D, TELEMAC-MASCARET) and driving (ELM) RDycore.
- 3. Extended E3SM-supported JIGSAW meshing library to new floodplain resolving ultra high-resolution.

- 1. Set up an open source repository for the RDycore library with an initial implementation of the solver for shallow water equation and code verification was performed.
- 2. Identified and configured multiple models for benchmarking (OFM, PHIM3D, TELEMAC-MASCARET) and driving (ELM) RDycore.
- 3. Extended E3SM-supported JIGSAW meshing library to new floodplain resolving ultra high-resolution.
- 4. Completed an initial development in PETSc and libCEED, a numerical library for higher-order FE methods, to support FV methods in libCEED.

- 1. Set up an open source repository for the RDycore library with an initial implementation of the solver for shallow water equation and code verification was performed.
- 2. Identified and configured multiple models for benchmarking (OFM, PHIM3D, TELEMAC-MASCARET) and driving (ELM) RDycore.
- 3. Extended E3SM-supported JIGSAW meshing library to new floodplain resolving ultra high-resolution.
- 4. Completed an initial development in PETSc and libCEED, a numerical library for higher-order FE methods, to support FV methods in libCEED.
- 5. Added RDycore within E3SM and performed short simulations on Perlmutter, Summit, Crusher, and Frontier with RDycore using GPUs.

Team member: Gautam Bisht

RDycore: Initial Development and Verification

- ▶ Implemented first-order accurate space (FV) and time (explicit) discretization methods
- Works on both triangle and quadrilateral mesh
- Performed initial code verification for two previously published problems

Development of Benchmarks: Houston Harvey Flooding

UMesh3 with 57,098 cells

- Selected Overland Flow Model (OFM)
- Selected the Houston Harvey flooding event, August 2017
- Spatially-homogenous, but temporally varying precipitation forcing is applied
- A time-varying tidal stream outflow BC is used
- When coarsening the mesh, the simulation efficiency increases, but accuracy decreases

Development of Benchmarks: Sediment Dynamics

- Selected TELEMAC-MASCARET as the benchmark model
- Selected the Janauaca catchment in the Amazon as the study site
- Completed a 10-yr flow simulation with 8 inflow BCs and 3 open flow BCs
- Performed an initial 1-yr sediment dynamics simulation

Unstructured meshes: global-to-(sub)watershed scales...

Push E3SM unstructured meshing workflow (JIGSAW library) to new 'ultra' high-resolution floodplain resolving levels.

Support additional boundary 'labelling' of geometry as well as XDMF/EXODUS file I/O, for PETSc interoperability.

PETSc and libCEED solver GPU/device portability

- Non-linear SWE: $\mathbf{X}_t = F(\mathbf{X})$
- PETSc provides multiple time integration methods
- Portability provided with two options on most architectures:
 - Vendor specific back-ends: CUDA, HIP
 - Kokkos back-end: eg, CUDA, HIP, SYCL, and OpenMP

Programming Model	Supporting Package	GPUs (devices)
CUDA	cuBLAS, cuSPARSE, Thrust	NVIDIA
HIP	hipBLAS, hipSparse, hipThrust	AMD
Kokkos	Kokkos, Kokkos-Kernels	NVIDA, AMD, Intel

- libCEED has been extended for FV method to compute the F(X) on the device
- PETSc's DMPlex has been extended to support libCEED's FV method

E3SM–RDycore Integration

- A test implementation of E3SM–RDycore has been completed.
- PETSc and RDycore are installed before building an E3SM case.
- RDycore initializes a simulation, runs to completion, and shuts off.
- RDycore tested on GPUs: (a) NVIDIA (Perlmutter and Summit) and (b) AMD (Crusher and Frontier).
- However, presently there is no exchange of information between ELM and RDycore.
- Exploited PETSc's runtime configurability to solve SWE on CPU or GPU via:
 - CPU : e3sm.exe
 - GPU via Kokkos: e3sm.exe -dm_vec_type kokkos
 - GPU via CUDA : e3sm.exe -dm_vec_type cuda
 - GPU via HIP : e3sm.exe -dm_vec_type hip

Thank you