
Precipitation Fraction Calculation Methods

Sean Patrick Santos

July 11, 2017

1 Current Methods

Currently, there are two methods of setting the precipitation fraction in the ACME
version of MG2. The default in_cloud method is as follows:

fp,k =

{
fp,k−1 if k > 1 and max(qc,k, qi,k) < qsmall

fc,k otherwise
(1)

Here fp,k and fc,k are the precipitation and cloud fraction, respectively, at level k
(k = 1 at top-of-model), while qc,k and qi,k are the liquid and ice mass mixing ratios,
respectively, at the same level. The constant qsmall is a somewhat arbitrary number used
to decide when a mass mixing ratio is negligible for numerical purposes.

There are several issues with the in_cloud method:

1. MG2 requires fp,k ≥ fc,k, which the in_cloud method does not guarantee. While
this is probably a bug, we’ll ignore this problem from here on because:

(a) It should be rare for in_cloud to choose fp,k−1 when it is smaller than fc,k, due
to spatial correlation between qc,k/qi,k and fc,k.

(b) The fix for this is trivial; just replace fp,k−1 with max(fp,k−1, fc,k).

2. The constant qsmall is intended to be used only for numerical purposes (i.e. set-
ting it arbitrarily small should not meaningfully change results). However, in this
case it has somehow become part of the equations to be solved. If we take the
limit qsmall → 0, the in_cloud method sets fp,k = fc,k, which is quite wrong. So the
method actually requires qsmall to be tuned to some non-zero value to work prop-
erly.

Again there is a fairly trivial fix for this, which would be to create a new constant,
separate from qsmall, and to use that constant as the threshold for in_cloud. But this
does imply that there has been a heretofore unacknowledged tuning parameter
hiding in the code.

1

3. Even if we arbitrarily declare Equation (1) to be the precipitation fraction by def-
inition, we find that the problem of calculating it is ill-posed, i.e. the calculation
is not continuous in its inputs. Whether or not we exceed the cloud mass thresh-
old can depend on an arbitrarily small change in qc,k/qi,k, and this can change the
precipitation fraction in a level dramatically.

This is responsible for the “double-convergence” behavior in MG2, where decreas-
ing the time step size causes the model to converge to a certain solution, until a
critical threshold is reached where the model suddenly begins to converge to a
significantly different solution.

The older, and perhaps more intuitive, precipitation fraction calculation method is
the max_overlap method:

fp,k =

{
max(fp,k−1, fc,k) if k > 1 and max(qr,k, qs,k) ≥ qsmall

fc,k otherwise
(2)

The threshold now depends on qr,k and qs,k, the rain and snow mass mixing ratios,
and does so in a way that causes the qsmall ratio to be less consequential. For this method,
we can guarantee that fp,k ≥ fc,k. However, the max_overlap method still has the same
problems with qsmall in theory, even if they will affect fewer columns in practice.

Furthermore, the max_overlap method simply produces precipitation fractions that
are too big, which is why it was replaced by in_cloud. A single level with a large cloud
fraction can cause the precipitation fraction in every level below it to be equally large,
even if most of the precipitation should actually be concentrated in a much smaller area.

2 Generalized Method

In order to explore alternative solutions, let’s consider a more general form for a pre-
cipitation fraction calculation method. Let’s define a vector which contains all the state
variable values at level k as ~sk (this includes the hydrometeor mass mixing ratios like qc,k,
as well as number concentrations, humidity, temperature, and pressure). A generalized
method that depends on some arbitrary function w would then look like this:

fp,k =

{
w(~sk, ~sk−1)fp,k−1 + (1− w(~sk, ~sk−1))fc,k if k > 1 and fp,k−1 > fc,k

fc,k otherwise
(3)

The reasoning behind this form is:

• Assuming that the function w is always positive, fp,k ≥ fc,k.

• The “fixed” version of the in_cloudmethod can be implemented by settingw equal
to 1 if the cloud mass is negligible, and 0 otherwise.

2

• The max_overlap method can be implemented via a similar method, setting w
equal to 1 if the precipitation mass is non-negligible, and 0 otherwise.

• If the range of w is [0, 1], this method yields a simple weighted average of the cloud
fraction in a given level and the precipitation fraction above it, which intuitively
makes sense given that the two sources of precipitation are sedimentation from
above and local production within clouds.

Note that w may be allowed to implicitly depend on various tuning parameters or
constants, but we will assume that it does not depend on space or time except through
its inputs ~sk and ~sk−1.

There are a few properties that we might want the method (3) to have, which can
constrain the function w:

Robustness The function should be continuous in its inputs; this is what we would ex-
pect if it is providing the solution to some well-posed problem.

Lipschitz Continuity While we don’t typically formally prove the existence of a solution
to MG2’s equations, Lipschitz continuity at least provides some evidence that the
precipitation fraction calculation is not a problem via the Picard-Lindelöf theo-
rem.

Convergence Under Vertical Refinement If refinement of the vertical grid causes the
cloud fraction fc,k and the state variables ~sk to converge to analytic functions of
height z, then fp,k should likewise converge to a piecewise analytic function of z.

Each of these properties is explored in more detail below.
Before we continue, let us define one more vector for each level, which we will call

~Sk. The vector ~Sk is defined to contain all state variables and the cloud fraction at the
current level, and on all levels above the current level. The motivation for definining ~Sk is
to capture all input variables which can affect the value of fp,k. When we refer to proper-
ties like continuity, we mean specifically that the value of fp,k is continuous in the input
~Sk.

3 Robustness

We can prove continuity of fp,k through induction.
At the top level, fp,1 = fc,1, so the precipitation fraction is trivially continuous in its

inputs. For levels below the top, the precipitation fraction is again trivially continuous
if fp,k−1 < fc,k. If fp,k−1 > fc,k, fp,k is continuous as long as fp,k−1 and w are continuous.
These two cases are pasted together at fp,k−1 = fc,k, where the value of fp,k approaches
fc,k from either side.

Therefore, for all k, fp,k is continuous in ~Sk as long as w is continuous.

3

4 Lipschitz Continuity

Since fp,1 = fc,1 is clearly Lipschitz, again we can use induction. Assume that fp,k−1 is
Lipschitz with constant αk−1, and that w is Lipschitz with constant β (in some p-norm,
where equivalence of norms makes choice of p irrelevant). Furthermore, assume that w
is positive and bounded, with a maximum valueW , and note that all fractions are in the
range [0, 1].

Again, the case fp,k−1 < fc,k is trivial, so let’s examine the other case. We want to
examine the difference in fp,k under two states, ~Sk and ~S ′k. For this section, the “primed”
quantities simply represent the inputs and calculated values for state ~S ′k.

‖f ′p,k − fp,k‖ =
∣∣∣w(~s′k, ~s′k−1)f ′p,k−1 + (1− w(~s′k, ~s′k−1))f ′c,k

−w(~sk, ~sk−1)fp,k−1 − (1− w(~sk, ~sk−1))fc,k|

≤
∣∣∣w(~s′k, ~s′k−1)f ′p,k−1 − w(~sk, ~sk−1)fp,k−1

∣∣∣
+
∣∣∣(1− w(~s′k, ~s′k−1))f ′c,k − (1− w(~sk, ~sk−1))fc,k

∣∣∣
=
∣∣∣w(~s′k, ~s′k−1)(f ′p,k−1 − fp,k−1) + (w(~s′k, ~s′k−1)− w(~sk, ~sk−1))fp,k−1

∣∣∣
+
∣∣∣(1− w(~s′k, ~s′k−1))(f ′c,k − fc,k)− (w(~s′k, ~s′k−1)− w(~sk, ~sk−1))fc,k

∣∣∣
≤ W

∣∣f ′p,k−1 − fp,k−1

∣∣+
∣∣∣w(~s′k, ~s′k−1)− w(~sk, ~sk−1)

∣∣∣
+ max(W − 1, 1)

∣∣f ′c,k − fc,k∣∣+
∣∣∣w(~s′k, ~s′k−1)− w(~sk, ~sk−1)

∣∣∣
Denoting the concatenatation of ~sk and ~sk−1 by ~s′k ⊕ ~s′k−1:

≤ Wαk−1‖~S ′k−1 − ~Sk−1‖+ 2β‖~s′k ⊕ ~s′k−1 − ~sk ⊕ ~sk−1‖
+ max(W − 1, 1)

∣∣f ′c,k − fc,k∣∣
Each of these three terms contains the norm of a vector that is part of ~S ′k − ~Sk, so:

‖f ′p,k − fp,k‖ ≤ [Wαk−1 + 2β + max(W − 1, 1)]‖~S ′k − ~Sk‖ (4)

This gives us Lipschitz continuity. If we take W = 1 (a reasonable choice for the
maximum of the weighting function w), a Lipschitz constant for level k is αk−1 + 2β + 1.

5 Convergence Under Vertical Refinement

For purposes of this section, we will assume that the vertical levels are defined by a
height z, and that the grid is uniform, with distance ∆z between levels. This is not really

4

true, but including the details of the hybrid coordinate system would complicate the
argument, so we will only address the non-uniformity of the grid at the end.

Consider again the form of our generalized method:

fp,k =

{
w(~sk, ~sk−1)fp,k−1 + (1− w(~sk, ~sk−1))fc,k if k > 1 and fp,k−1 > fc,k

fc,k otherwise
(5)

Assume again that the range of w is [0, 1], and that it has the properties mentioned
above (in particular, that it is continuous).

At the top of the column, we have fp,k = fc,k, and as we move down through the
column, this will be true until we reach the ground, or a level where fc,k < fp,k−1, i.e.
until we reach a level where the cloud fraction is decreasing as we descend. At that point,
fp,k > fc,k up until we either reach the ground, the weighting function w is zero, or the
cloud fraction increases enough to exceed the precipitation fraction of the level above.
In the latter two cases, we will again have fp,k = fc,k until the cloud fraction decreases.

If the cloud fraction converges to some “nice” (e.g. continuous) function as we refine
the grid, the precipitation fraction will also converge in regions where fp,k = fc,k, so
again let’s focus on regions where fc,k < fp,k. In this case:

fp,k = w(~sk, ~sk−1)fp,k−1 + (1− w(~sk, ~sk−1))fc,k

(1− w(~sk, ~sk−1))fp,k = w(~sk, ~sk−1)(fp,k−1 − fp,k) + (1− w(~sk, ~sk−1))fc,k

fp,k =
w(~sk, ~sk−1)

1− w(~sk, ~sk−1)
(fp,k−1 − fp,k) + fc,k (6)

In this last step, we assume that w(~sk, ~sk−1) 6= 1. Note that as the distance between
levels (∆z) decreases, if the precipitation fraction is converging to a continuous function
of height z:

lim
∆z→0

fp,k−1 − fp,k = 0 (7)

Therefore, Equation (6) implies that, as you refine the vertical grid, either the precip-
itation converges to the cloud fraction, or:

lim
∆z→0

w(~sk, ~sk−1) = 1 (8)

Since we want the precipitation and cloud fraction to be able to differ, and the pre-
cipitation to converge to some continuous function, we will impose (8) as a constraint
on w for all input states. One way of accomplishing this is by explicitly including ∆z as
a parameter in the weighting function, but this is not very satisfying (and our uniform
grid in z is an artificial contrivance anyway).

A better way is to assume that the state variables ~sk converge to some continuous
function of z as the grid is refined, and leverage the fact that the two inputs to w will

5

therefore become arbitrarily close as the grid is refined. Then it is sufficient to say that
for any state ~s:

w(~s, ~s) = 1 (9)

Let us now assume that we have some analytic function fp(z) to which we want the
values fp,k to converge. That is, if we define zk as the height of the k-th level:

lim
∆z→0

fp,k = fp(zk) (10)

(Note that we want this to hold for a fixed height zk rather than for a fixed value of k.
So k is actually a function of ∆z, while zk is not.)

Let us first look at the various inputs used to calculate fp,k. First, let’s assume that
the cloud fraction converges to some function fc(z), with at least a first-order rate of
convergence.

fc,k = fc(zk) +O(∆z) (11)

Let’s make a similar assumption for the state variables, but this time explicitly label
the error term at level k as ~ek:

~sk = ~s(zk) + ~ek (12)

Assuming that the state variables are analytic functions of height, we can express
~s(zk−1) using a Taylor series, so:

~sk−1 = ~s(zk−1) + ~ek−1

= ~s(zk) + ∆z~s′(zk) + ~ek−1 +O(∆z2) (13)

Let’s use ~∇1w as the vector of partial derivatives of w with respect to the state vari-
ables at level k, i.e. the gradient over the subspace inhabited by the first argument to
w. Define ~∇2w similarly as a gradient over the second argument. Then we can express
w(~sk, ~sk−1) like so, assuming that the error terms are analytic functions of ∆z, and thatw
has no explicit dependence on ∆z:

6

w(~sk, ~sk−1) = w(~s(zk) + ~ek, ~s(zk) + ∆z~s′(zk) + ~ek−1 +O(∆z2))

= w(~s(zk), ~s(zk)) + ∆z[~∇1w(~s(zk), ~s(zk))] ·
d~ek
d∆z

∣∣∣∣
∆z=0

+ ∆z[~∇2w(~s(zk), ~s(zk))] ·
[
~s′(zk) +

d~ek−1

d∆z

∣∣∣∣
∆z=0

]
+O(∆z2)

= 1 + ∆z[~∇1w(~s(zk), ~s(zk))] ·
d~ek
d∆z

∣∣∣∣
∆z=0

+ ∆z[~∇2w(~s(zk), ~s(zk))] ·
[
~s′(zk) +

d~ek−1

d∆z

∣∣∣∣
∆z=0

]
+O(∆z2) (14)

We can also get a similar expression where we express the first argument using a
Taylor series rather than the second one.

w(~sk, ~sk−1) = w(~s(zk−1)−∆z~s′(zk) + ~ek +O(∆z2), ~s(zk−1) + ~ek−1)

= 1 + ∆z[~∇1w(~s(zk), ~s(zk))] ·
[
−~s′(zk) +

d~ek
d∆z

∣∣∣∣
∆z=0

]
+ ∆z[~∇2w(~s(zk), ~s(zk))] ·

d~ek−1

d∆z

∣∣∣∣
∆z=0

+O(∆z2) (15)

Comparing this with (14), we find that:

[~∇1w(~s(zk), ~s(zk))] ·
d~ek
d∆z

∣∣∣∣
∆z=0

+ [~∇2w(~s(zk), ~s(zk))] ·
[
~s′(zk) +

d~ek−1

d∆z

∣∣∣∣
∆z=0

]
= [~∇1w(~s(zk), ~s(zk))] ·

[
−~s′(zk) +

d~ek
d∆z

∣∣∣∣
∆z=0

]
+ [~∇2w(~s(zk), ~s(zk))] ·

d~ek−1

d∆z

∣∣∣∣
∆z=0

+O(∆z)

Taking the limit as ∆z goes to zero:

~∇2w(~s(zk), ~s(zk)) · ~s′(zk) = ~∇1w(~s(zk), ~s(zk)) · −~s′(zk)
~∇2w(~s(zk), ~s(zk)) = −~∇1w(~s(zk), ~s(zk)) (16)

This last step is justified by the fact that the state variables and their vertical deriva-
tives are independent. Since this should apply at every level, we can rewrite (15) as:

w(~sk, ~sk−1) = 1 + ∆z[~∇1w(~s(zk), ~s(zk))] ·
[
−~s′(zk) +

d~ek
d∆z

− d~ek−1

d∆z

]∣∣∣∣
∆z=0

+O(∆z2) (17)

7

We would prefer not to deal with the derivatives of the error terms, so let us add a
further assumption. Note the following, using our assumption about the analyticity of
the error terms in ∆z:

~ek − ~ek−1 = ∆z

[
d~ek
d∆z

∣∣∣∣
∆z=0

− d~ek−1

d∆z

∣∣∣∣
∆z=0

]
+O(∆z2)

lim
∆z→0

~ek − ~ek−1

∆z
=

[
d~ek
d∆z

∣∣∣∣
∆z=0

− d~ek−1

d∆z

∣∣∣∣
∆z=0

]
(18)

This expression represents the error of a first-order approximation to the vertical
derivative of the state variables, in the limit of an infinitely fine grid. Typically in an
atmosphere model we want the error in the vertical gradient of a variable to approach
zero as the grid is refined (e.g. for flux calculations), which means that the right side of
the equation must equal 0. Then our equation becomes:

w(~sk, ~sk−1) = 1−∆z~∇1w(~s(zk), ~s(zk)) · ~s′(zk) +O(∆z2) (19)

Since the dot product depends only on zk, not on ∆z, let’s define a new functionW (z)
to represent it. Then:

w(~sk, ~sk−1) = 1−∆zW (zk) +O(∆z2) (20)

It is worth noting at this point that if we constrain w to be no greater than 1, W (zk)
must be non-negative. However, W (zk) depends on ~s(zk) and ~s′(zk), which in general
can vary independently, so this means that one of the following must hold:

1. w has a well-behaved maximum (partial derivatives are all zero) when its two ar-
guments are the same, i.e. W (zk) is always 0. As we will see below, this is probably
undesirable.

2. w has a cusp (discontinuous partial derivatives) when its two arguments are the
same. The “gradient” of w used to define W (z) is therefore not uniquely defined,
but instead must be chosen as a limit from a particular direction in the state space,
chosen in a such a way as to guarantee that W (z) is non-negative.

The main point here is that w will typically be defined in terms of various cases, and
those cases will be distinguished by whether a given state variable is increasing or de-
creasing with height. (For example, is the rain mass greater in level k or level k − 1?)

There is one more input used to determine fp,k, and that is fp,k−1. Let’s define Ek to
be the error at level k. Then:

fp,k−1 = fp(zk) + ∆zf ′p(zk) + Ek−1 +O(∆z2) (21)

8

Now we have everything we need to figure out whether Ek approaches 0 as the grid
is refined. First, let’s look at Ek in the region where fp,k = fc,k. In this case:

Ek = fp,k − fp(zk)
= fc,k − fp(zk)
= fc(zk)− fp(zk) +O(∆z) (22)

This tells us that the error goes to zero if and only if the converged precipitation
fraction and the converged cloud fraction are equal at this level, which is entirely rea-
sonable. (Also, since we assume first-order convergence in the cloud fraction, the same
rate of convergence holds for the precipitation fraction.)

Now consider the more interesting case where fp,k > fc,k:

Ek = fp,k − fp(zk)
= [w(~sk, ~sk−1)fp,k−1 + (1− w(~sk, ~sk−1))fc,k]− fp(zk)
= [(1−∆zW (zk))(fp(zk) + ∆zf ′p(zk) + Ek−1) + (∆zW (zk))(fc(zk) +O(∆z))]

− fp(zk) +O(∆z2)

= −∆zW (zk)fp(zk) + ∆zf ′p(zk) + ∆zW (zk)fc(zk) + (1−∆zW (zk))(Ek−1) +O(∆z2)

(23)

Since we wantEk to approach 0 as the grid is refined, we can write down at this point
a differential equation that we expect this method to solve, namely the first-order linear
equation:

f ′p(z) = W (z)(fp(z)− fc(z)) (24)

(We can see here why it is undesirable to have W (z) = 0 now. Any weighting func-
tion w that produces such a W will lead to a precipitation fraction that is constant
when out-of-cloud precipitation is present, i.e. it will converge to the same result as
the max_overlap method with qsmall = 0.)

Let’s say that the region where fp(z) > fc(z) has its top at zc, which is the lowest point
above zk where fp(z) = fc(z), providing an upper boundary condition for solving the
equation. This equation has the well-known solution:

fp(zk) = e
−

∫ zc
zk
W (z) dz

[fc(zc) +

∫ zc

zk

W (z)e
∫ zc
z W (z′) dz′fc(z) dz] (25)

Let’s now turn to proving that our method actually converges to this solution. If
Equation (24) holds, then we can write Ek as:

Ek = O(∆z2) + (1−∆zW (zk))(Ek−1) (26)

9

Let’s takeW to be bounded (which is fine ifw is Lipschitz and the state variables have
bounded derivative, consistent with our assumptions above). Then for small enough
∆z, 1−∆zW (zk) is in the interval [0, 1], and so:

|Ek| ≤ O(∆z2) + |Ek−1| (27)

Let’s say that the lowest level above k for which fp,k = fc,k is level n. By induction, we
can say that:

|Ek| ≤ O((k − n)∆z2) + |En| (28)

However, (k − n)∆z is simply the distance between levels zk − zn, which approaches
the constant zk − zc as the grid is refined. Also, assuming that the cloud fraction con-
verges to first order, En = O(∆z), so we can see that Ek = O(∆z), and we have at least
first-order convergence.

Finally, we can complete this analysis by dealing with use of non-uniform pressure
coordinates rather than a uniform z grid. For purposes of this section we will dispense
with the idea that z is a real physical height, and instead label it as a purely artificial
coordinate that (a) decreases as k increases, and (b) uniformly spaces the levels.

Models using hybrid coordinates may have a different set of pressure coordinates for
each column or even each moment in time. This is largely irrelevant for our purposes
since we are only concerned with the convergence of the calculation for a single column
at a single time.

Therefore, we will assume that for a given column at a given time, there is some an-
alytic invertible function P (z) that, when given a coordinate z on the uniform grid, out-
puts the coordinate p used on the non-uniform grid. A key assumption about P (z) is
that it is independent of ∆z; that is, we assume that when we increase the level of re-
finement, we do so throughout the column (as opposed to, say, adding all of our new
levels near the ground).

It is clear from this assumption that we can use P (z) to translate all inputs to func-
tions of z, do the above analysis, and then use the inverse P−1(p) to translate the outputs
back to pressure coordinates. So the conclusions above are largely unchanged. We only
need to check Equation (24), which is still in terms of z.

First, let’s substitute in our inputs. If we have a cloud fraction in terms of pressure
f̃c(p), then:

fc(z) = f̃c(P (z)) (29)

We want to go into a little more detail for W , which similarly we can define using
state variables ~̃s that are functions of pressure:

W (z) = ~∇1w(~s(z), ~s(z)) · ~s′(z)

= ~∇1w(~̃s(P (z)), ~̃s(P (z))) · (P ′(z)~̃s′(P (z))) (30)

10

Let’s then define W̃ like so:

W̃ (p) = ~∇1w(~̃s(p), ~̃s(p)) · ~̃s′(p) (31)

Then W (z) = P ′(z)W̃ (P (z)).
Now the output, fp:

fp(z) = f̃p(P (z))

f ′p(z) = P ′(z)f̃ ′p(P (z)) (32)

Plugging all this in to Equation (24):

P ′(z)f̃ ′p(P (z)) = P ′(z)W̃ (P (z))(f̃p(P (z))− f̃c(P (z))) (33)

Or more simply:

f̃ ′p(p) = W̃ (p)(f̃p(p)− f̃c(p)) (34)

Perhaps unsurprisingly, the equation does not change significantly with the change
of variables. The one thing worth noting here is that, since pressure decreases with
height, W̃ (p) will be negative where W (z) was positive.

6 Summary Of Generalized Method Properties

To sum up, we have looked at the properties of this method, where w is an weighting
function that depends on the state variables in two levels:

fp,k =

{
w(~sk, ~sk−1)fp,k−1 + (1− w(~sk, ~sk−1))fc,k if k > 1 and fp,k−1 > fc,k

fc,k otherwise

We’ve found that this method converges to the solution of the following initial value
problem (where p1 is the pressure at the model top, and the tildes from the previous
section have been dropped for convenenience):

fp(p1) = fc(p1)

f ′p(p) =

{
f ′c(p) if fp(p) = fc(p) and f ′c(p) > 0

W (p)(fp(p)− fc(p)) otherwise
(35)

W (p) = ~∇1w(~s(p), ~s(p)) · ~s′(p)

11

The function ~∇1w should be understood as a gradient of w in its first argument, in-
terpreted as a one-sided limit approaching from a direction corresponding to ~s′(p) so
that W is always negative (this is much simpler than it sounds, as the examples below
will show).

This result follows from some basic assumptions about the rate of convergence of
the inputs to the method, as well as the following constraints on w:

1. w is Lipschitz continuous in its inputs.

2. The range of w is (a subset of) [0, 1] for all physically realizable inputs.

3. Its value is always 1 when its arguments are equal.

4. For any point where the two arguments ofw are equal, there is some neighborhood
of that point where w is piecewise analytic (that point itself typically will be on a
boundary where two or more analytic functions are pasted together, which is fine
as long as all such functions can be analytically continued through that point).

7 Examples

Let’s consider a simple strategy. The weighting function w represents the degree to
which the precipitation fraction from higher levels is preserved in lower levels. So let’s
say that the major process that reduces the precipitation fraction as one descends is
evaporation, and that we are only concerned with evaporation of rain mass (qr), using
no other state variables. In that case, we can define a simple weighting function like so:

w(qr,k, qr,k−1) =

{
qr,k
qr,k−1

if qr,k < qr,k−1

1 otherwise
(36)

This weighting function assumes that a reduction in rain mass as one descends cor-
responds to a proportional decrease in precipitation fraction.

Unfortunately, this choice fails our very first criterion due to having a discontinuity
at qr,k = qr,k−1 = 0. The simplest fix (that does not introduce a new limiter to worry
about) is to add a small positive parameter qnudge to move the discontinuity out of our
way (qsmall could plausibly be used for this purpose):

w(qr,k, qr,k−1) =

{
qr,k+qnudge

qr,k−1+qnudge
if qr,k < qr,k−1

1 if qr,k ≥ qr,k−1

(37)

This function is clearly Lipschitz and bounded, it is analytic on either side of the line
qr,k = qr,k−1, and it is equal to 1 on that line.

To find W (p), we need the derivative of w with respect to the first argument:

12

∂

∂qr,k
w(qr,k, qr,k−1) =

{
1

qr,k−1+qnudge
if qr,k < qr,k−1

0 if qr,k > qr,k−1

(38)

Note that the condition here is equivalent to checking whether qr is increasing or
decreasing with height. This leads to the following expression for W (p), which in com-
bination with (35) tells us the equation solved by this method:

W (p) =

{
1

qr(p)+qnudge

dqr
dp

if dqr
dp
< 0

0 if dqr
dp
≥ 0

(39)

In reality, there are several possible objections to this particular method, which re-
duce its appeal. To mention a few:

• The precipitation fraction includes both rain and snow, which can transmute into
one another through freezing/melting.

• The precipitation fraction may not be reduced by the same amount as the rain
mass under evaporation. E.g. evaporating half the rain mass might only reduce
the precipitation fraction by a quarter.

• The precipitation fraction could be reduced not only by evaporation, but by pro-
duction of precipitation. For instance, if a wide cloud layer produces miniscule
amounts of precipitation, but a narrow cloud layer below it is producing heavy
precipitation, we probably want to define the precipitation fraction to be closer to
the cloud fraction in the latter rather than the former.

One possible solution is the below method, in which qt is the total precipitation (rain
plus snow), and α and β are arbitrary constants in the interval [0, 1].

w(qt,k, qt,k−1) =

{
αqt,k+(1−α)qt,k−1+qnudge

qt,k−1+qnudge
if qt,k < qt,k−1

βqt,k−1+(1−β)qt,k+qnudge

qt,k+qnudge
if qt,k ≥ qt,k−1

(40)

The previous method is equivalent to this one if there is no snow and (α, β) = (1, 0).
This w also satisfies all of our criteria, with:

W (p) =

{
α

qt(p)+qnudge

dqt
dp

if dqt
dp
< 0

− β
qt(p)+qnudge

dqt
dp

if dqt
dp
≥ 0

(41)

13

