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1 Overview of Approach

A recent workshop organized by the Office of Advance Scientific Comput-
ing Research at the US Department of Energy summarized challenges and
opportunities in solving multiphysics problems across a wide range of applica-
tions, including climate modeling, subsurface science, and surface-subsurface
hydrology (Keyes et al., 2013). There are a large number of third party
softwares that can provide robust numerical solution to partial differential
equations (eg. MOOSE, PETSc, SUNDIALS, Trilinos ).

PETSc’s DMComposite approach provides a modular framework to solve
coupled multi-physics problems. PETSc-SNES example 28 demonstrates the
use of DMComposite to solve the following system of PDE coupled to an
algebraic equation in 1D:

−(kux)x = 1 on (0,1), subject to u(0) = 0, u(1) = 1 (1a)

ek−1 + k =
1

1

(1 + u)
+

1

(1 + u2x)

(1b)

The finite difference discretization of the above equations lead to the
following set of residual equations,

Fu = − 1

∆x

[
ki

(
ui+1 − ui

∆x

)
− ki−1

(
ui − ui−1

∆x

)]
− 1 (2a)

Fk = eki−1 + ki −
1

1

(1 + 0.5(ui + ui+1))
+

1

(1 + (ui+1 − ui)2/(∆x)2)

(2b)

The above mentioned discretized set of equations can be solved by Newton-
Raphson method as 

∂Fu

∂u

∂Fu

∂k
∂Fk

∂u

∂Fk

∂k


∆u

∆k

 = −

Fu

Fk

 . (3)

A pseudo Fortran code for computing residual and Jacobian correspond-
ing to the above mentioned equations are as follows:
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++++++++++++++++++++++++++++++++++++++++++++++++++++++++

subroutine FormFunction_All()

! Assemble residual vector: F = [fu fk]T;

! determine number of DMs

call DMCompositeGetNumberDM(dm, nDM, ierr)

! Get sub-vectors for X and F

call DMCompositeGetAccessArray(dm, X, nDM, PETSC_NULL_INTEGER, X_subvecs, ierr)

call DMCompositeGetAccessArray(dm, F, nDM, PETSC_NULL_INTEGER, F_subvecs, ierr)

! Call respective subroutines to compute residual evaluation

call FormFunctionLocal_U(X_subvecs(1), F_subvecs(1), ...)! fu

call FormFunctionLocal_K(X_subvecs(2), F_subvecs(2), ...)! fk

end subroutine FormFunction_All

++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++

subroutine FormJacobian_All()

! Assemble jacobian matrix: J = [dfu/du dfu/dk; dfk/du dfk/dk]

! determine number of DMs

call DMCompositeGetNumberDM(dm, nDM, ierr)

! Get sub-vectors for X and F

call DMCompositeGetAccessArray(dm, X, nDM, PETSC_NULL_INTEGER, X_subvecs, ierr)

call DMCompositeGetAccessArray(dm, F, nDM, PETSC_NULL_INTEGER, F_subvecs, ierr)

! Get sub-matrices

allocate(B_submats(nDM,nDM))

call DMCompositeGetLocalISs(dm, is, ierr)

do row = 1,nDM

do col = 1,nDM

call MatGetLocalSubMatrix(B, is(row), is(col), B_submats(row,col), ierr)

enddo

enddo

! Assemble diagonal matrices

call FormJacobianLocal_U(B_submats(1,1),...) ! dfu/du

call FormJacobianLocal_K(B_submats(2,2),...) ! dfk/dk

! Assemble off-diagonal matrices

call FormJacobianLocal_UK(B_submats(1,2),...)! dfu/dk

call FormJacobianLocal_KU(B_submats(2,1),...)! dfk/du

end subroutine FormJacobian_All

++++++++++++++++++++++++++++++++++++++++++++++++++++++++
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Figure 1: Schematic representation of a soil-root-plant hydraulics model.

For the ACME Land Model (ALM), the PETSc-based multi-physics
framework would be use to solve soil–root–plant hydraulic model, as shown
in Figure 1.
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2 Richards Equation

The Richards equation implemented in the ALM is similar to RICHARDS Mode
in PFLOTRAN. For water equation of state, PFLOTRAN uses IFC-67 steam
tables, while ALM uses Tanaka et al. (2001). Additionally, PFLOTRAN uses
PETSc’s DMDA, while ALM uses PETSc’s DMComposite.

The following subsections are obtain from PFLOTRAN Developer Guide
with permission from PFLOTRAN developers1.

2.1 Governing Equations

The governing mass conservation equation for Richards equation is given by

∂

∂t
(ϕsρ) + ∇ · (ρq) = Qw, (4)

and

q = −kkr(s)
µ

∇ (P −Wwρgz) . (5)

Here, ϕ denotes porosity [-], s saturation [m3m−3], ρ water density [kmol
m−3], q Darcy velocity [m s−1], k intrinsic permeability [m2], kr relative
permeability [-], µ viscosity [Pa s], P pressure [Pa], Ww formula weight of
water [kg kmol−1], g gravity [m s−2], z the vertical component of the position
vector [m], and Qw is source of water [kmol m−3 s−1]. Density and viscosity
of water are non-linear function of pressure.

2.1.1 Capillary Pressure Relations

Capillary pressure is related to saturation by various phenomenological rela-
tions, one of which is the van Genuchten (1980) relation

se =

[
1 +

(
pc
p0c

)n]−m
, (6)

where pc represents the capillary pressure [Pa], and the effective saturation
se is defined by

se =

[
s− sr
s0 − sr

]
, (7)

1Peter Lichtner (OFM), Glenn Hammond (SNL), Satish Karra (LANL)
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where sr denotes the residual saturation, and s0 denotes the maximum sat-
uration. The inverse relation is given by

pc = p0c
(
s−1/me − 1

)1/n
. (8)

The quantities m, n and p0c are empirical constants determined by fitting to
experimental data.

2.1.2 Relative Permeability

Relative permeability function is based on the Mualem and the quantity n
is related to m by the expression

m = 1− 1

n
, n =

1

1−m
(9)

For the Mualem relative permeability function based on the van Genuchten
saturation function is given by the expression

kr =
√
se

{
1−

[
1− (se)

1/m
]m}2

. (10)

2.2 Finite Volume Discretization

The number of degrees of freedom is equal to the number of control vol-
umes N with one degree of freedom, fluid pressure P , per control volume.
The following applies to both structured and unstructured grids assuming a
two-point flux approximation. For accuracy this requires in the case of an
unstructured grid that the line connecting neighboring control volumes be
perpendicular to their common interface.

2.2.1 Residual Function

The residual function for the Richards equation at the k + 1st time level is
given by

Rn =
(

(ϕsρ)k+1
n − (ϕsρ)kn

)Vn
∆t

+
∑
n′ 6=n

F k+1
nn′ Ann′ −Qk+1

wn Vn, (11)

for the nth control volume with volume Vn and interfacial area Ann′ , where
the sum over n′ is over all control volumes connecting with the nth control
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volume. The finite volume form of the flux Fnn′ is given by

F k+1
nn′ = ρk+1

nn′

(
q
)k+1

nn′ . (12)

The Darcy velocity qnn′ is evaluated as (the superscript k + 1 is omitted in
the following)

qnn′ = −
(kkr
µ

)
nn′

[
Pn′ − Pn −Wwρnn′g(zn − zn′)

dn′ + dn

]
, (13)

where the subscript nn′ implies the quantity is evaluated at the interface
between n and n′. The density ρnn′ is set equal to the inverse distance mean
(not arithmetic mean)

ρnn′ = ωn′ρn + (1− ωn′)ρn′ , (14)

where

ωn =
dn

dn′ + dn
= 1− ωn′ . (15)

The quantity in brackets is evaluated using the harmonic mean for perme-
ability and upwinding for mobility λ = kr/µ(kkr

µ

)
nn′

=
knkn′(dn′ + dn)

dnkn′ + dn′kn
λnn′ , (16)

where

λnn′ =

{
λn, qnn′ > 0,
λn′ , qnn′ < 0,

(17)

where qnn′ > 0 for flow from n to n′, and qnn′ < 0 for flow from n′ to n.
Combining these relations it follows that

qnn′ = − knkn′

dnkn′ + dn′kn
λnn′

[
Pn′ − Pn −Wwρnn′gznn′

]
. (18)

2.2.2 Jacobian

The Jacobian Jnn′ is given by the derivatives of the residual function with
respect to pressure as

Jnn′ =
∂Rn

∂Pn′
. (19)
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From the expression for the residual function it follows that

∂Rn

∂Pn

=
Vn
∆t

∂

∂Pn

(
ϕnsnρn

)
+
∑
n′ 6=n

∂Fnn′

∂Pn

Ann′ −
∂Qwn

∂Pn

Vn, (20)

and for n′ 6= n
∂Rn

∂Pn′
=
∑
n′ 6=n

∂Fnn′

∂Pn′
Ann′ −

∂Qwn

∂Pn′
Vn. (21)

For the accumulation term one has

∂

∂Pn

(
ϕnsnρn

)
= snρn

∂ϕn

∂Pn

+ ϕnρn
∂sn
∂Pn

+ ϕnsn
∂ρn
∂Pn

. (22)

The derivative of the flux terms is found to be

∂Fnn′

∂Pn

=
∂ρnn′

∂Pn

qnn′ + ρnn′
∂qnn′

∂Pn

, (23)

and
∂Fnn′

∂Pn′
=

∂ρnn′

∂Pn′
qnn′ + ρnn′

∂qnn′

∂Pn′
, (24)

with

∂qnn′

∂Pn

=
knkn′

dnkn′ + dn′kn
λnn′

{
1 +Wwgznn′

∂ρnn′

∂Pn

}
+
∂ lnλnn′

∂Pn

qnn′ , (25)

and

∂qnn′

∂Pn′
=

knkn′

dnkn′ + dn′kn
λnn′

{
−1 +Wwgznn′

∂ρnn′

∂Pn′

}
+
∂ lnλnn′

∂Pn′
qnn′ . (26)
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