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1. On the Spatial and Temporal Order of Convergence of PDEs

Pop Quiz: Order of Convergence of Global Solution Error Norm with Respect to Exact Solution

You are modeling the PDE ut = F (u, ux , uxx , · · · , x , t)

Numerical Method Refinement in Space: Refinement in Time: Refinement in Space and Time:
O (∆xα), O

(
∆tβ

)
∆x → 0, ∆t fixed ∆t → 0, ∆x fixed ∆x → 0, ∆t → 0, ∆t/∆x fixed

α = 2, β = 1
α = 2, β = 2
α = 2, β = 3
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With a stable numerical scheme, the order of accuracy of the global solution error is the same as that of the global
truncation error,

τ̂G = O (∆xα) + ∆tO (∆xα) + ∆t2O (∆xα) + · · ·+ ∆tβ−1O (∆xα) +O
(

∆tβ
)

which can be approximated as

τ̂G ≈ O (∆xα) +O
(
∆tβ

)
, for ∆t � 1
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τ̂G = O (∆xα) + ∆tO (∆xα) + ∆t2O (∆xα) + · · ·+ ∆tβ−1O (∆xα) +O
(

∆tβ
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which can be approximated as

τ̂G ≈ O (∆xα) +O
(
∆tβ

)
, for ∆t � 1

A simultaneous refinement of ∆t and ∆x , while maintaining their ratio ∆t/∆x = γ, a constant, yields

τ̂G ≈ O (∆xα) +O
(

∆tβ
)

= O (∆xα) +O
(
γβ∆x

β
)

= O (∆xα) +O
(

∆xβ
)
≈ O

(
∆xmin(α,β)

)
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τ̂G = O (∆xα) + ∆tO (∆xα) + ∆t2O (∆xα) + · · ·+ ∆tβ−1O (∆xα) +O
(

∆tβ
)
,

which can be approximated as

τ̂G ≈ O (∆xα) +O
(
∆tβ

)
, for ∆t � 1.

A simultaneous refinement of ∆t and ∆x , while maintaining their ratio ∆t/∆x = γ, a constant, yields

τ̂G ≈ O (∆xα) +O
(

∆tβ
)

= O (∆xα) +O
(
γβ∆x

β
)

= O (∆xα) +O
(

∆xβ
)
≈ O

(
∆xmin(α,β)

)
.

Strategy: Given α, we need β ≥ α to obtain maximum possible order of accuracy. But we gain no improvement
in order of convergence for β > α despite more work. So, optimum choice is β = α.
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1. On the Spatial and Temporal Order of Convergence of PDEs

Order of convergence of the error norm in the asymptotic regime at constant ratio of time-step to
grid spacing for varying orders of spatial and temporal discretizations

Order of Time-Stepping Order of Order of Convergence of Error Norm in
Spatial Method Time-Stepping Asymptotic Regime at Constant Ratio

Discretization Employed Method of Time-Step to Grid Spacing
α β min(α, β)

1 FE 1 min(1,1) = 1

1 RK2 or AB2 2 min(1,2) = 1

1 RK3 or AB3 3 min(1,3) = 1

1 RK4 or AB4 4 min(1,4) = 1

2 FE 1 min(2,1) = 1

2 RK2 or AB2 2 min(2,2) = 2

2 RK3 or AB3 3 min(2,3) = 2

2 RK4 or AB4 4 min(2,4) = 2

3 FE 1 min(3,1) = 1

3 RK2 or AB2 2 min(3,2) = 2

3 RK3 or AB3 3 min(3,3) = 3

3 RK4 or AB4 4 min(3,4) = 3

4 FE 1 min(4,1) = 1
4 RK2 or AB2 2 min(4,2) = 2
4 RK3 or AB3 3 min(4,3) = 3
4 RK4 or AB4 4 min(4,4) = 4

FE ≡ forward Euler, RK ≡ Runge-Kutta, and AB ≡ Adams-Bashforth
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1. On the Spatial and Temporal Order of Convergence of PDEs: Motivation

A graduate level textbook on numerical analysis typically contains standard
predictor-corrector and multistep time-stepping methods applied to ODEs in
one chapter, followed by spatial discretization operators of PDEs in another.

In real-world applications, the discretization of the PDE consists of both spatial
and temporal components.

The order of convergence of a PDE with spatial and/or temporal refinement is
a function of both the mesh spacing ∆x and the time step ∆t.

I investigate this simultaneous dependence of the local truncation error of the
numerical solution of a PDE on ∆x and ∆t, for varying orders of spatial and
temporal discretizations.
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1.1. Analytical Derivation of Local Truncation Error

Local Truncation Error of a Generic Hyperbolic PDE

Theorem 1. Given the exact solution unj of a hyperbolic PDE ut = F(u, ux , x , t) on a uniform mesh with spacing ∆x , at spatial locations xj
for j = 1, 2, . . ., and at time level tn, the exact solution at time level tn+1 = tn + ∆t may be obtained by Taylor expanding unj about time level
tn as

un+1
j = unj +

∞∑
k=1

∆tk

k!

(
∂ku

∂tk

)n

j

≡ unj +
∞∑
k=1

∆tk

k!

(
F (k)

)n
j
,

where
(
F (k)

)n
j

=
(
∂ku
∂tk

)n
j

is the kth-order spatial derivative at xj and tn. The numerical solution at time level tn+1, obtained with a time-stepping

method belonging to the Method of Lines, may be written in the general form

ûn+1
j = unj +

∞∑
k=1

∆tk

k!

(
F̂ (k) +O (∆xα)

)n
j
,

where α is the order of the spatial discretization and F̂ (k) is specified by the time-stepping method. If β represents the order of the time-stepping
method, (

F̂ (k)
)n
j

=
(
F (k)

)n
j
≡
(
∂ku

∂tk

)n

j

, for k = 1, 2, . . . , β.

The local truncation error is then

τ̂n+1
j = un+1

j − ûn+1
j

=
∆t

1!
O (∆xα) +

∆t2

2!
O (∆xα) +

∆t3

3!
O (∆xα) + · · ·+ ∆tβ

β!
O (∆xα) +

∆tβ+1

(β + 1)!
(cβ+1 +O (∆xα))nj +O

(
∆tβ+2

)
= ∆tO (∆xα) + ∆t2O (∆xα) + ∆t3O (∆xα) + · · ·+ ∆tβO (∆xα) +O

(
∆tβ+1

)
,

where (cβ+1)nj =
(
F (β+1)

)n
j
−
(
F̂ (β+1)

)n
j
6= 0.

Bishnu, S., Petersen, M., Quaife, B., “On the Spatial and Temporal Order of Convergence of Hyperbolic PDEs”, Journal of Computational
Physics (submitted)
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1.1. Analytical Derivation of Local Truncation Error

But wait! I can still verify the order of accuracy by refining only ∆x or ∆t!

Assume a stable numerical scheme, ∆t � 1, and the the global solution error is of the same order of
accuracy as the global truncation error τ̂G ≈ O (∆xα) +O

(
∆tβ

)
≈ ζ∆xα + ζβ+1∆tβ.

Convergent behavior as ∆t → 0, keeping ∆x fixed (refinement only in time)

Given ∆x and ∆t, measure the global solution error at a time horizon.
Reduce ∆t by a constant ratio, say p, but keep ∆x fixed.
Measure the global solution error at the same time horizon.
Plot the norm of the difference between the errors against ∆t.

Proof: For two time steps ∆ti and ∆ti+1, with ∆ti+1/∆ti = p < 1, we can write

(τ̂Gi
)j ≈ ζ∆xα + ζβ+1∆tβi ,

(
τ̂Gi+1

)
j
≈ ζ∆xα + ζβ+1∆tβi+1,

∆
{(
τ̂Gi,i+1

)
j

}
= (τ̂Gi

)j −
(
τ̂Gi+1

)
j

= ζβ+1

(
∆tβi −∆tβi+1

)
= ζβ+1∆tβi+1

(
p−β − 1

)
.

Taking logarithm of both sides,

log
[
∆
{(
τ̂Gi,i+1

)
j

}]
= θ + β log (∆ti+1) , where θ = log

{
ζβ+1

(
p−β − 1

)}
is constant.

Note that the exact solution is independent of ∆x or ∆t. So,

∆τ̂G ≡ τ̂G1 − τ̂G2 =
(
uexact − u1

numerical

)
−
(
uexact − u2

numerical

)
= u2

numerical − u1
numerical.

By plotting norm of error (or numerical solution) difference between successive spatial resolutions, we can
attain convergence with spatial order of accuracy.
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1.1. Analytical Derivation of Local Truncation Error

Increase in Global Solution Error with only Temporal Refinement

For certain PDEs and discretization methods, the global solution error can increase with only temporal refinement. A simple example
is the one-dimensional linear homogeneous constant-coefficient advection equation ut + aux = 0, discretized in space with the
first-order upwind finite difference scheme and advanced in time with the first-order Forward Euler method. The global truncation
error, approximating the global solution error, is[

(τ̂G )j

]
leading order

= −1

2
|a|∆x

(
1− |a|∆t

∆x

)
(uxx)nj = −1

2
|a|∆x (1− C ) (uxx)nj .

where C = |a|∆t/∆x is the Courant number, which is positive and must be less than one to ensure numerical stability. Maintaining
C < 1, if ∆x is held constant and ∆t is refined, then (1− C ) increases towards 1, and the magnitude of the global truncation error
increases. Moreover, the error will be diffusive in nature.

Numerical Example: ∆x = 1/28 (fixed)
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∆t = 2× 10−3, L2 Error = 2.61× 10−2

Exact Solution

Numerical Solution
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∆t = 1× 10−4, L2 Error = 5.12× 10−2
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Numerical Solution
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1.2. Derivation by Symbolic Algebra

Developed a Symbolic Python (SymPy) library (consisting of ∼ 12, 600 lines of code) that contains
Taylor Series expansion in x , y , z ,
routines for determining the local truncation error of

the generic ODE ut = F(u, t), and the generic hyperbolic PDE ut = F(u, ux , x , t)
a specific ODE ut + (p0 + q1)u = f (t), and specific PDEs, such as the inhomogeneous, linear
variable-coefficient and non-linear advection equations

ut + p(x)u + (q(x)u)x = f (x , t),

ut + uux = f (x , t).

If p(x) = p0, q(x) = q0 + q1x , u and f are only functions of t, the linear PDE reduces to the ODE,
and so does its truncation errors. I have used

first-, second-, and third-order spatial discretizations for the PDEs
five explicit time-stepping methods

first-order Forward Euler method
second-order explicit midpoint method
Williamson’s low-storage third-order Runge-Kutta method
second-order Adams-Bashforth method
third-order Adams-Bashforth method

three implicit time-stepping methods

first-order Backward Euler method
second-order implicit midpoint method
second-order Crank-Nicholson method (Trapezoidal Rule)
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1.2. Derivation by Symbolic Algebra

Relevant Terms in the Local Truncation Error of the Generic One-Dimensional Advection Equation

Table B.11: The term 1
3! F̂ (3) in the numerical solution ûn+1

j = un
j +

∞∑
k=1

∆tk
k!

(
F̂ (k) + O (∆xα)

)n

j
of the generic advection equation (42) at spatial

location x j and time level tn+1 = tn + ∆t, obtained with a spatial discretization of order α and advanced in time with the second-order explicit and
implicit midpoint methods, with prior knowledge of the exact solution un

j for j = 1, 2, 3, . . . at time level tn, and the term 1
3! c3 in the local truncation

error, τ̂n+1
j =

β∑
k=1

∆tk
k! O (∆xα) +

∞∑
k=β+1

∆tk
k! (ck + O (∆xα))n

j where (ck)n
j =

(
F (k)

)n

j
−

(
F̂ (k)

)n

j
, with

(
F (k)

)n

j
=

(
∂ku
∂tk

)n

j
, the kth-order temporal derivative

of the dependent variable at spatial location x j expressed as functions of quantities known at time level tn, and v = ux, w1 = uxx, w2 = uxxx for
notational convenience

Explicit
Midpoint
Method

1
3! F̂ (3) 1

4FFuFuvv+ 1
4FFuvFvw1 + 1

4FFuvFx + 1
8Ftt

1
3! c3

1
6FF 2

u + 1
12FFuFuvv + 1

4FFuvFvw1 + 1
12FFuvFx + 1

6FFuxFv + 1
6FtFu + 1

24Ftt

+ 1
3F 2

u Fvv + 1
6FuFuvFvv2 + 1

2FuF 2
v w1 + 1

6FuFvFvxv + 1
3FuFvFx + 1

2FuvF 2
v vw1

+ 1
6FuvFvFxv + 1

3FuxF 2
v v + 1

6F 3
v w2 + 1

2F 2
v Fvxw1 + 1

6F 2
v Fxx + 1

6FvFvxFx + 1
6FvFxt

Implicit
Midpoint
Method

1
3! F̂ (3)

1
4FF 2

u + 1
4FFuFuvv + 1

2FFuvFvw1 + 1
4FFuvFx + 1

4FFuxFv + 1
4FtFu + 1

8Ftt

+ 1
2F 2

u Fvv + 1
4FuFuvFvv2 + 3

4FuF 2
v w1 + 1

4FuFvFvxv + 1
2FuFvFx + 3

4FuvF 2
v vw1

+ 1
4FuvFvFxv + 1

2FuxF 2
v v + 1

4F 3
v w2 + 3

4F 2
v Fvxw1 + 1

4F 2
v Fxx + 1

4FvFvxFx + 1
4FvFxt

1
3! c3

− 1
12FF 2

u + 1
12FFuFuvv + 1

12FFuvFx − 1
12FFuxFv − 1

12FtFu + 1
24Ftt − 1

6F 2
u Fvv

− 1
12FuFuvFvv2− 1

4FuF 2
v w1− 1

12FuFvFvxv− 1
6FuFvFx− 1

4FuvF 2
v vw1− 1

12FuvFvFxv

− 1
6FuxF 2

v v − 1
12F 3

v w2 − 1
4F 2

v Fvxw1 − 1
12F 2

v Fxx − 1
12FvFvxFx − 1

12FvFxt

33

Recall that for second-order time-sepping methods, F̂ (1) = F (1), F̂ (2) = F (2), but F̂ (3) 6= F (3) leading to c3 = F (3)−F̂ (3) 6= 0.
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1.2. Derivation by Symbolic Algebra

Terms containing ∆t l∆xk l × k ∈ {{1, 2} × {0, 1, 2}} ∪ {{3} × {0}} within local truncation error of the numerical solution of the
linear inhomogeneous variable-coefficient advection equation ut + p(x)u + (q(x)u)x = f (x , t), discretized in space with first order
upwind finite difference and advanced in time with explicit midpoint method

Table B.9: Terms containing ∆tl∆xk for l × k ∈ {{1, 2, 3} × {0, 1, 2, 3}} within the local truncation error of the numerical solution of the linear
variable-coefficient inhomogeneous advection equation given by ut + p(x)u + (q(x)u)x = f (x, t), discretized in space with a first order upwind finite
volume scheme and advanced in time with the explicit midpoint method

l k Term containing ∆tl∆xk within the Local Truncation Error

1

0 0

1 ∆t
[
∆x

{
− 1

2 quxx − qxux − 1
2 qxxu + . . .

}]

2 ∆t
[
∆x2

{
1
6 quxxx + 1

2 qxuxx + 1
2 qxxux + 1

6 qxxxu + . . .
}]

2

0 0

1

∆t2
[
∆x

{
− 1

4 f qxx − 1
2 fxqx − 1

4 fxxq + 1
2 pquxx + pqxux + 1

2 pqxxu

+ 1
2 pxqux + 1

2 pxqxu + 1
4 pxxqu + 1

2 q2uxxx + 9
4 qqxuxx

+ 7
4 qqxxux + 1

2 qqxxxu + 3
2 q2

xux + qxqxxu + . . .
}]

2

∆t2
[
∆x2

{
1
12 f qxxx + 1

4 fxqxx + 1
4 fxxqx + 1

12 fxxxq − 1
6 pquxxx − 1

2 pqxuxx − 1
2 pqxxux

− 1
6 pqxxxu − 1

4 pxquxx − 1
2 pxqxux − 1

4 pxqxxu − 1
4 pxxqux − 1

4 pxxqxu − 1
12 pxxxqu

− 7
4 qqxuxxx − 17

8 qqxxuxx − 5
4 qqxxxux − 7

4 q2
xuxx − 5

2 qxqxxux − 2
3 qxqxxxu − 3

8 q2
xxu + . . .

}]

3 0

∆t3
[

1
6 f p2 + 1

3 f pqx + 1
6 f pxq + 1

6 f qqxx + 1
6 f q2

x − 1
6 ft p − 1

6 ftqx + 1
24 ftt + 1

3 fx pq

+ 1
2 fxqqx − 1

6 fxtq + 1
6 fxxq2 − 1

6 p3u − 1
2 p2qux − 1

2 p2qxu − 1
2 ppxqu − 1

2 pq2uxx

− 3
2 pqqxux − 1

2 pqqxxu − 1
2 pq2

xu − 1
2 pxq2ux − 2

3 pxqqxu − 1
6 pxxq2u − 1

6 q3uxxx

−q2qxuxx − 2
3 q2qxxux − 1

6 q2qxxxu − 7
6 qq2

xux − 2
3 qqxqxxu − 1

6 q3
xu + . . .

]

20

By specifying all spatial gradients to zero, the local truncation error reduces to that of the ODE ut +(p0 +q1)u = f (t), advanced with
the explicit midpoint method, ∆t3

[
1
6
fp2

0 + 1
3
fp0q1 + 1

6
fq2

1 −
1
6
ftp0 − 1

6
ftq1 + 1

24
ftt − 1

6
p3

0u −
1
2
p2

0q1u − 1
2
p0q2

1u −
1
6
q3

1u
]
+O

(
∆t4

)
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1.3. Numerical Experiments: Linear Advection

Convergence of Linear Advection using First-Order Upwind (Finite Difference) in Space (α = 1)
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Convergence of Linear Advection using Piecewise Parabolic Reconstruction (Finite Volume) in Space (α ≈ 3)
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1.3. Numerical Experiments: Non-Linear Burgers’ Advection

Convergence of Non-Linear Advection using First-Order Upwind (Finite Difference) in Space (α = 1)
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Convergence of Non-Linear Advection using Piecewise Parabolic Reconstruction (Finite Volume) in Space (α ≈ 3)
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2.1. Barotropic-Baroclinic Splitting

Ocean circulation models deals with disparate time scales by splitting the momentum equations into two parts:

a barotropic part for solving the depth independent fast 2D barotropic waves (advanced in time either explicitly
using a small time-step or implicitly using a long time-step) and
a baroclinic part for solving the much slower 3D baroclinic waves

Before reconciling the barotropic variables with their baroclinic counterparts to arrive at the total 3D states, a
time-averaging filter is applied over the barotropic solutions, to minimize aliasing and mode-splitting errors.

Level 1

Level 2

Level 3

Level k

Level 1

Level 2

Level 3

Level k

Fully Stratified Ocean

Vertical Section

Kang, H., Evans, K., Petersen, M., Jones, P., and Bishnu, S., (2021), “A scalable semi-implicit barotropic mode solver
for the MPAS-Ocean”, Journal of Advances in Modeling Earth Systems
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2.1. Time-Averaging Filters Incorporated in MPAS-Ocean

Rectangular and Cosine Filters with Primary (Red) & Secondary (Blue) Weights
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Hamming Window and Shchepetkin’s Filters with Primary (Red) & Secondary (Blue) Weights
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2.1. Surface Gravity Wave Simulation in MPAS-Ocean with Various Filters

Numerical SSH with RK4 vs split-explicit method using rectangular and cosine filters
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Numerical SSH with RK4 vs split-explicit method using Hamming Window and Shchepetkin’s filters
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2.1. Shallow Water Solver Simulating Surface Gravity Wave

To understand the combined stabilizing effect of various barotropic time-averaging filters and the forward-backward (FB) parameters, I
developed a non-linear shallow water solver in object-oriented Python and tested it against the simulation of a surface gravity wave.

I obtain a near-exact solution using a truncated Fourier series approximation, which is spectrally accurate in space, and the classic
fourth-order Runge-Kutta (RK4) method in time. I treat it as the reference benchmark to compare to my numerical solution, employing
piecewise parabolic reconstruction in space and the forward-backward (FB) time-stepping method with parameter γ,
un+1 = un + F (un, ηn) ∆t; ηn+1 = ηn +

{
(1− γ)G (un, ηn) + γG

(
un+1, ηn

)}
∆t, where ut = F(u, η); ηt = G(η, t) represent the

non-linear shallow water equations in functional form.

The following table lists maximum error norms of the surface elevation of the gravity wave after 1 hour (30 baroclinic time steps, each
consisting of 2 minutes and 20 barotropic subcycles) for a variety of filters and FB parameter γ.

Surface Elevation Maximum Error Norm ×10−3

FB No Rectangular Filter with Range R Cosine Filters Shchepetkin Filters
Parameter γ Filter R = 0.25 R = 0.375 R = 0.50 R = 0.75 R = 1.00 ROMS HW 2nd Order Min. Disp.

−0.50 2.322 2.611 1.780 2.277 2.408 3.039 1.945 1.573 1.951 1.629
−0.25 2.192 2.514 1.703 2.191 2.441 3.073 1.834 1.452 1.976 1.685
+0.00 2.065 2.417 1.607 2.107 2.474 3.121 1.737 1.333 2.003 1.741

+0.25 1.946 2.327 1.521 2.075 2.506 3.238 1.641 1.230 2.035 1.822
+0.50 1.847 2.240 1.453 2.101 2.537 3.354 1.554 1.138 2.088 1.902

+0.75 1.750 2.154 1.386 2.126 2.567 3.470 1.486 1.048 2.141 1.983

+1.00 1.653 2.070 1.461 2.151 2.601 3.592 1.418 1.016 2.197 2.080
+1.25 1.583 1.986 1.542 2.184 2.640 3.718 1.477 1.106 2.274 2.182

+1.50 1.515 1.964 1.628 2.220 2.678 3.843 1.558 1.214 2.352 2.284

HW ≡ Hamming Window Cosine Filter and Min. Disp ≡ Shchepetkin Filter Optimized for Minimal Numerical Dispersion
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2.2. Verification Suite of Barotropic Test Cases

Motivation: The development of any numerical ocean model warrants a suite of verification exercises
for testing its spatial and temporal discretizations. I have designed a set of shallow water test cases
for verifying the barotropic solver of ocean models.

Geophysical Waves and Barotropic Tide

1 Non-Dispersive Coastal Kelvin Wave
2 Low Frequency Dispersive Planetary Rossby Wave
3 Low Frequency Dispersive Topographic Rossby Wave
4 High Frequency Dispersive Inertia Gravity Wave
5 Non-Dispersive Equatorial Kelvin Wave
6 Dispersive Equatorial Yanai Wave
7 Low Frequency Dispersive Equatorial Rossby Wave
8 High Frequency Dispersive Equatorial Inertia Gravity Wave
9 Barotropic Tide

Standard Mathematical Test Cases

1 Diffusion Equation
2 Viscous Burgers Equation
3 Non-linear Manufactured Solution
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2.2. Verification Suite of Barotropic Test Cases

I developed a new unstructured-mesh ocean model (consisting of ∼ 12, 600 lines of code) in object-oriented
Python, employing TRiSK-based spatial discretization, and the following set of time-stepping algorithms:

Standard Mathematical Time-Stepping Algorithms

1 Forward Backward Method or Implicit Euler Method
2 Explicit Midpoint Method, a Form of Second-Order Runge-Kutta Method
3 Low-Storage Third-Order Runge-Kutta Method of Williamson
4 Low-Storage Fourth-Order Runge-Kutta Method of Carpenter and Kennedy
5 Second-Order Adams-Bashforth Method
6 Third-Order Adams-Bashforth Method
7 Fourth-Order Adams-Bashforth Method

Time-Stepping Algorithms Popular in Ocean Modeling

1 Leapfrog Trapezoidal Method
2 Leapfrog Adams Moulton Method
3 Forward Backward Method with RK2 Feedback
4 Generalized Forward Backward Method with AB2 - AM3 Step
5 Generalized Forward Backward Method with AB3 - AM4 Step

Siddhartha Bishnu E3SM All-Hands Webinar, June 24, 2021 19



2.2. Verification Suite: Coastal Kelvin Wave
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2.2. Verification Suite: High-Frequency Inertia-Gravity Wave
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2.2. Verification Suite: Low-Frequency Planetary Rossby Wave
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2.2. Verification Suite: Low-Frequency Topographic Rossby Wave
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2.2. Verification Suite: Barotropic Tide
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2.2. Verification Suite: Non-Linear Manufactured Solution
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2.2. Verification Suite: Summary of Shallow Water Test Cases

Summary of Shallow Water Test Cases for the Barotropic Solver of Ocean Models

Coriolis Bottom Numerical Boundary
Parameter Topography PDE Conditions

Coastal Kelvin Constant Flat Linear, Homogeneous, Non-Periodic in x ,
Wave (f-plane) Bottom Constant-Coefficient Periodic in y

Inertia-Gravity Constant Flat Linear, Homogeneous, Periodic in x ,
Wave (f-plane) Bottom Constant-Coefficient Periodic in y

Planetary Linear in y Flat Linear, Inhomogeneous, Periodic in x ,
Rossby Wave (beta plane) Bottom Variable-Coefficient Non-Periodic in y

Topographic Constant Linear in y , Linear, Inhomogeneous, Periodic in x ,
Rossby Wave (f-plane) Sloping Bottom Variable-Coefficient Non-Periodic in y

Barotropic Constant Flat Linear, Homogeneous, Non-Periodic in x ,
Tide (f-plane) Bottom Constant-Coefficient Non-Periodic in y

Manufactured Constant Flat Non-Linear, Inhomogeneous, Periodic in x ,
Solution (f-plane) Bottom Constant-Coefficient Periodic in y
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2.2. Verification Suite: Convergence of Spatial Operators

Convergence of TRiSK-based gradient, divergence, curl, and flux interpolation operators
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Recap Slide 1. On the Order of Convergence of PDEs

Order of convergence of the error norm in the asymptotic regime at constant ratio of time-step to
grid spacing for varying orders of spatial and temporal discretizations

Order of Time-Stepping Order of Order of Convergence of Error Norm in
Spatial Method Time-Stepping Asymptotic Regime at Constant Ratio

Discretization Employed Method of Time-Step to Grid Spacing
α β min(α, β)

1 FE 1 min(1,1) = 1

1 RK2 or AB2 2 min(1,2) = 1

1 RK3 or AB3 3 min(1,3) = 1

1 RK4 or AB4 4 min(1,4) = 1

2 FE 1 min(2,1) = 1

2 RK2 or AB2 2 min(2,2) = 2

2 RK3 or AB3 3 min(2,3) = 2

2 RK4 or AB4 4 min(2,4) = 2

3 FE 1 min(3,1) = 1

3 RK2 or AB2 2 min(3,2) = 2

3 RK3 or AB3 3 min(3,3) = 3

3 RK4 or AB4 4 min(3,4) = 3

4 FE 1 min(4,1) = 1
4 RK2 or AB2 2 min(4,2) = 2
4 RK3 or AB3 3 min(4,3) = 3
4 RK4 or AB4 4 min(4,4) = 4

FE ≡ forward Euler, RK ≡ Runge-Kutta, and AB ≡ Adams-Bashforth
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2.2. Verification Suite: Convergence of Shallow Water Test Cases

Convergence of the coastal Kelvin wave, the high-frequency inertia-gravity wave, the barotropic tide, and the non-linear
manufactured solution with simultaneous refinement in space and time
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4 × 10 3
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Coastal Kelvin Wave:
Refinement in Space and Time

FB2: s = -2.10
GenFB_AB2-AM3_3: s = -2.16
GenFB_AB2-AM3_4: s = -2.11
GenFB_AB3-AM4_2: s = -2.05
GenFB_AB3-AM4_3: s = -2.00
GenFB_AB3-AM4_4: s = -2.08
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Inertia Gravity Wave:
Refinement in Space and Time

FB2: s = -1.86
GenFB_AB2-AM3_3: s = -1.87
GenFB_AB2-AM3_4: s = -1.88
GenFB_AB3-AM4_2: s = -1.82
GenFB_AB3-AM4_3: s = -1.82
GenFB_AB3-AM4_4: s = -1.91

102 1.1 × 102 1.2 × 102 1.3 × 102 1.4 × 102 1.5 × 102
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4 × 10 2
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Barotropic Tide:
Refinement in Space and Time

FB2: s = -2.11
GenFB_AB2-AM3_3: s = -2.07
GenFB_AB2-AM3_4: s = -2.10
GenFB_AB3-AM4_2: s = -2.06
GenFB_AB3-AM4_3: s = -2.07
GenFB_AB3-AM4_4: s = -2.08
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NonLinear Manufactured Solution:
Refinement in Space and Time

RK2: s = -1.00
RK3: s = -1.00
RK4: s = -1.00
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Conclusions, Future Work and Current Status

Conclusions

On the Spatial and Temporal Order of Convergence of Hyperbolic PDEs
The order of convergence at constant ratio of time step to cell width is determined by the minimum of the orders of the spatial and temporal
discretizations.
Convergence of the error norm cannot be guaranteed under only spatial or temporal refinement.

Time-Stepping Methods for Ocean Models

The amount of dissipation applied to stabilize the barotropic modes can be controlled by (a) the time-averaging filter, or (b) the
forward-backward time-stepping parameters. Too much dissipation can damp the entire solution, not just the spurious oscillations.
The order of convergence of an ocean model under simultaneous refinement in space and time is limited by minimum of the orders of accuracy
of the time-stepping method, and all spatial operators like gradient, divergence, curl etc.

Ongoing and Future Work

Extend truncation error analysis and the convergence studies to parabolic equations, higher order and spectral discretizations in space and time,
and time integrators beyond Method of Lines.
Design verification exercises with complexity in between the barotropic and the full primitive equations, involving stratification, a complex
bathymetry, and the ability to test both the barotropic and baroclinic components separately.

Relevant Publications

Bishnu, S., Petersen, M., Quaife, B., “On the Spatial and Temporal Order of Convergence of Hyperbolic PDEs”, Journal of Computational
Physics (submitted)
Bishnu, S., Petersen, M., Quaife, B., “A Suite of Verification Exercises for the Barotropic Solver of Ocean Models” (in preparation)

Current Status

Successfully defended PhD Dissertation on June 10, 2021.
Hoping to continue working at the Los Alamos National Laboratory (LANL) as a postdoctoral researcher and collaborate with scientists working
on E3SM at LANL and other national laboratories.
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