
Performers Performing Performance
E3SM 2021 Summer All-Hands

Phil Jones, Sarat Sreepathi on behalf of Performance Group:

Oksana Guba, Noel Keen, Youngsung Kim, Jayesh Krishna, Azamat Mametjanov, Mark
Taylor, Matt Turner, Pat Worley, Min Xu

Also: Nichols Romero, Xingqiu Yuan

Goals
• Optimizing throughput for campaigns

– Chrysalis, CompyMcNodeFace, Anvil
– Debugging, load-balancing

• Preparing for future architectures
– Frontier
– Perlmutter
– Aurora

• Creating infrastructure for performance
– Metrics: Standard benchmarks
– Monitoring and Analysis Tools

New machines/early access now available
• Perlmutter Phase I (installed, NESAP)

– Epyc Milan CPU/4 Nvidia A100 GPU
– Slingshot/Dragonfly
– SS (Flash) – no disk, Lustre
– CUDA, OpenACC/OpenMP
– Phase II: more CPU-only nodes, more NICs

• Frontier (delivery this year, early sys avail)
– 1 AMD Epyc CPU/ 4 AMD Radeon GPU
– Slingshot/Dragonfly
– Flash/Disk hybrid/tiered Lustre
– HIP, OpenMP Offload

• Aurora (2022, systems in JLSE already avail)
– 2 Intel Xeon CPU/ 6 Intel Xe GPUs
– Slingshot/Dragonfly
– DAOS (Distrb Async Obj Store), Lustre
– oneAPI, SYCL, OpenMP

• Now is the opportune moment

Fugaku
• A64FX

– Evaluation of “custom” approach
– Modified ARM architecture
– Environment still immature

• HOMME Dycore Efficiency
– 1k elements*nsteps/s/node or GPU
– Good, but modest

• Other custom efforts
– Project 38
– Grace (Nvidia)
– Most focused on memory

• Hybrids still most likely

Strategery remains…
• Kokkos/YAKL for atmosphere

– C++ performance-portable
– See Peter’s presentation

• Fortran+Directives for ocean/ice
– Merging these from ECP version
– Transition to C++, API/PM TBD in NGD
– Issues with performance portability

• Land
– Fortran+directives
– Useful primarily for N. American high-res

• Optimal use cases
– MMF, highest res

• Just about there…

In the meantime: Recent Issues in Production
• Chrysalis

– Hardware: bad switches, cables, network configuration (also Anvil)
– Software: kernel settings (CPU power), MPI bugs, hyperthreading
– Now all fixed – 40 SYPD! , thanks to Az, Jayesh, et al.

• Debugging/Optimization
– Usual PE layout tuning
– I/O tuning
– Debugging non bfb issues in several cases
– Fixing OpenMP issues
– See Code Review…

• MPAS-seaice in F cases to replace CICE
– Eliminated excess I/O, remaining costs are mesh/partition related

• Others…

Coder Integrity / Coder Suppression
• Coder fraud, Coding errors

– Registering lots of new coders
– Audits, observers (testing), esp. coupled mode
– Absentee PRs (b4b when turned off)
– Gaps in process
– Contributed to delay in calling v2

• Code Review Deep Dive
– Improve process for coder integrity
– Not so heavy that it contributes to coder

suppression
• From Performance perspective

– Let us help early on w/ design
– Need to evaluate performance
– GPU-ready code, OpenMP, etc

The Infrastructure Plan
• Metrics gathering

– Standard E3SM benchmarks (v2)
– CPMIP, AGU
– New: Memory diagnostics (rootPE, per PE)
– New: More detail in I/O timers, per file, per component, r/w

• I/O
– ADIOS 2, read capability, CIME mods
– Also more disk, filesystem policies on Compy

• PACE
– Integrate, summarize I/O metrics
– Simulation context to detect outliers
– Performance recommendations
– Provenance (with IG)
– Naming standards help with searching, context

• Machine usage monitoring
– Anvil underutilized! New dashboard image?
– How well are we using, update queue/usage policies

• Evaluating other tools
– Byfl, Nsight, HPC toolkit, etc.

• New – kernel extraction

Kernel Extraction

Colonel Extraction Kernel Extraction

Kernel Extraction and Characterization
• ekea (tool formerly known as EKgen)

– Extracts kernel and relevant data
– Used for detailed characterization with

realistic data
– Vendor interactions
– GitHub: E3SM-Project/ekea

• Detailed GPU characterization
– Example: RRTMG++
– Many kernels, diff behavior
– Integer calculation (indexing)
– Memory bandwidth

• Kernel classification

MPAS Loop Kernel
• Many MPAS-Ocean loop forms have

incompatible optimizations
– Optimal GPU forms do not vectorize on

CPU, more work (1.5-2x slower on CPU)
– Optimal CPU/vector forms do not provide

enough parallel threads for GPU (GPU form
10x faster on GPU)

• Created standalone loop kernel code
– Github: E3SM-Project/codesign-kernels

• Loop re-ordering complex
– Not amenable to common abstraction
– Will need to retain two versions

!$acc parallel loop collapse(2) &
!$acc present(various arrays) &
!$acc private(private vars)
do iEdge = 1, nEdges
do k = 1, nVertLevels

Compute intermediate factors

do i = 1, nCellsForEdge(iEdge)
compute edgeFlx(i)

end do

do i = 1, nCellsForEdge(iEdge)
highOrderFlx(k,iEdge) =
highOrderFlx(k,iEdge) +

edgeFlx(i)
end do

enddo ! Vert (k) loop
enddo ! iEdge loop

!$acc parallel loop
!$acc present(various arrays)
&
!$acc private(private vars)
do iEdge = 1, nEdges

! compute common factors as
!k-vectors
do k = 1, nVertLevels

temps(k) = stuff
end do

do i = 1, nCellsForEdge(iEdge)

Compute several (i,iEdge)
factors as scalars
do k = 1, maxLevelCell(iCell)
flxTmp(k) = stuff

end do ! k loop

end do ! i loop

do k=1,nVertLevels
highOrderFlx(k,iEdge) =

flxTmp(k)
end do

enddo

GPU-friendly form:
Edge,k loops collapsed for
more parallelism
But inside loop is not
vectorizable
More memory accesses
(arrays can’t be reduced to
scalars), masks for k-index

CPU-friendly form:
Only outside loop is
parallelized
Inside k-loop is vectorized
More scalar, reduced array
temps for better memory use
Loop over only active layers

Summary
• Continuing to improve performance and keep campaigns going
• Building out a $2T Infrastructure plan
• But new machines hitting the floor so…

For you Letterkenny fans…

