Ocean NGD

Ocean Model in E3SM for Global Applications (OMEGA) project

Luke Van Roekel
6/8/2021

On behalf of many - Steven Brus, Andrew Bradley, Kat Smith, Pete Boesler, Matt Turner, Xylar Asay-Davis, Darren Engwirda, Sara Calandrini, Mark
Petersen, Chad Sockwell, Alice Barthel, LeAnn Conlon, Filipe Soares-Pereira,
Anirban Sinha, Scott Bachman, Brodie Pearson, Jon Wolfe

Energy Exascale Earth System Model

History and Purpose

- Grown out of the Waves MiniNGD
- Initial Goal: Implement WAVEWATCHIII as a component in E3SM
- Goals of the new ocean NGD
- Firmly establish DOE as the leader in coastal ocean modeling and coastal ocean impacts
- Accelerate ocean model exascale readiness
- Pursue low hanging fruit to improve ocean/ice fidelity and performance for v3/v4

Subgroup Focus Areas

- Physics parameterizations: Mesoscale Eddy, Submesoscale Eddy, vertical mixing
- Framework and Testing: New Framework, Increased testing coverage, improved testing infrastructure, Discretizations
- Waves: making wave model possible for climate simulations
- ML/Ai: Parameterization development, grid design

Why start with waves?

- Wind-generated waves are an important interfacial process in the climate system
- Some cross-component interactions include:
- Ocean vertical mixing
- Sea-state dependent drag
- White-capping albedo
- Sea-ice floe size

Advancing Coastal Ocean Modeling

Influence of Waves on the Ocean

NGD Targets

- Link sea state from WAVEWATCHIII to the coupler
- Implement sea spray and bubble parameterization
- Langmuir Turbulence

Sea state dependent flux

Influence of Sea-ice on Arctic Coast

- Tides and associated mixing are essential to sea-ice in the Arctic
- Pattern of sea-ice loss impacts CONUS

ARCTIC SEA SURFACE HEIGHT (cm)
31-MAR-2002 23:20

NGD Targets

ARCTIC SEA SURFACE HEIGHT $(\mathrm{cm}) \quad 01$-APR-2002 00:15

- Embed sea-ice model into ocean model
- Improve sea ice physics (new ridging scheme)

Influence of ocean eddies on BGC

- Mesoscale and submesoscale eddies impact BGC
- Global impact and future changes unknown
- E3SM uniquely positioned with RRM capability

Iron Production in S. Ocean

Recent Progress

Waves

- Great progress - method developed to allow wave model to see same coastline as MPAS
- Initial paper published at GMD
- Rotated Pole
- Langmuir turbulence mixing nearly complete

Physics

- Mesoscale Eddies
- New configuration developed for testing (top right)
- Conducting high res G-case for baseline
- Submesoscale eddies
- Configuring MLI cases in LES code (right)
- Vertical mixing
- Initial buoyant convection simulations nearly complete (below) - paper nearing completion
- Langmuir turbulence implementation next

Passive Tracer Supercycling

- Supercycling
- Implementation essentially complete, awaiting MARBL integration which is in progress

compass - Configuration Of MPAS Setups

What is it?

- Python package
- Realistic and idealized test cases
- Regression testing
- Meshes and ICs for E3SM
- MPAS-Ocean, MALI and OMEGA*
* soon

Recent Progress

- Complete rewrite as python pkg.
- Improved flexibility and code reuse
- Easier use on E3SM machines
- More standard development approach
- Extensive documentation
- Porting or development of 92 test cases (19 land-ice, 73 ocean)

Variable Resolution Mesh

Discretization progress

Williamson TC2 test case

Next Steps

Wave Modeling

- Moving toward applications
- Stokes Drift and Langmuir Turbulence
- CO2 flux changes through Arctic
- Still working on implementation
- Currently porting wave source terms to GPU

Physics

- Vertical Mixing
- Run new closure in global configuration
- Add entrainment equation -Arctic Halocline
- Mesoscale Eddies
- Implement EKE based scheme
- Understand where resolution is necessary for AMOC
- Submesoscale Eddies
- Conduct parameter sweeps to improve current submesoscale closures
- Coupled ocean/atmosphere LES

Framework and Testing

- Rebuild the framework to emphasize performance over flexibility
- Port framework to C/C++, API still TBD
- Emphasize tight coupling between domain and computational scientists
- Coding standards
- Testing
- Quicker on ramp to GPU
- Increased testing: Operator convergence, unit testing, validation
- Build the new dynamical core upon the semi implicit solver and explore new timestepping methods for the baroclinic mode
- Continue to explore TRSK++ ideas
- Some TRSK cases appear unstable.

compass - Configuration Of MPAS Setups

Short- and long-term plans

- Port ~ 70 additional test cases
- Develop new regression and convergence tests
- Build new E3SM meshes
- Run automated nightly testing
- Task parallelism with Parsl

Find out more

- Development: https://github.com/MPAS-Dev/compass/tree/master
- Documentation: https://mpas-dev.github.io/compass/latest/

Overiew
Command-line interface
Organiztion of Tests
Organization of
Landice core
Ocean core
Framework
Machines
Documentation
Builiding the Documentation
APTreference
Design Documents
glossary
Clossary
VERSIONS

Cryosphere Campaign.
SOwISC12to60
The Southern Ocean 12 - to 60 -km mesh with ice-shelf cavities (SOWISC12to60), sometimes called the Southern Ocean regionally refined mesh (SORRM) is intended to be the main simulation mesh for the E3SM v2 Cryosphere Science Campaign.
 km at the equator and in the North Atlantic, 60 km in the North Pacifc, and 35 km in the Arctic. The mesh includes the lce-shelf cavities around Antarctica in the ocean domain.

Initialization

- Models spun up in a few ways
- Atmosphere tuned in data ocean cases
- Ocean spun up and tuned in data atmosphere/land cases
- Data assimilation also used (esp. decadal prediction)
- Initial path forward
- Implement method to do staged spin up of data ocean (F-case) and data atmosphere cases

How to use ML/Ai?

ML/AI possibilities

- SmartSim: a scalable open source front end to ML/AI libraries

- Successfully applied to ocean GM parameterization
- First proof of concept is for submesoscale eddies
- But many more possibilities exist.

Parameterization augmentation

- Submesoscales

- Implement the standard FoxKemper (2008) parameterization
- Explore use of AI to constrain the Kappa value in the scheme or the vertical structure function

ML/Ai: Smart Grid Design

