

E3SM Science Goals and Priorities

L. Ruby Leung, E3SM chief scientist

E3SM all-hands meeting, June 2021

Overarching plan

Goals	Science Drivers	Strategies	Implementations
Understand Earth system variability and change	Water cycle: water availability, storms, floods and droughts Biogeochemistry: temperatures, heat extremes, wildfires Cryosphere: sea level rise, coastal inundation	 Push the high- resolution frontier of Earth system modeling Represent natural, managed and manmade systems across scales Quantify uncertainty using ensemble modeling 	 Regional refinement using unstructured grids Global cloud resolving modeling Coupled human-earth system modeling Coastal modeling Large-ensemble modeling Use of ML/AI
Simulations, predictions, and projections to support DOE's energy mission			
Prepare for and overcome the disruptive transition to next era of computing			
Science ques	tions → Model de	velopment → Sim	ulation and analysis

Implementations through project phases

Water cycle

Biogeochemistry

Cryosphere

V2 development and integration, v1 and v2 simulation campaigns, analysis to address science questions of the coupled system Software and algorithm

NH atmosphere model

Atmosphere physics

Energy and land

Ocean modeling

Dynamic ice sheet

Large ensemble modeling

Development towards v3 and v4, focusing on component models

Infrastructure

Performance

Code and data management, automated testing, timing and profiling, diagnostics, computational performance

E3SM goal: support actionable science

- Actionable science:
 - Enable societally (particularly energy-sector) relevant science (e.g., capabilities to evaluate decarbonization strategies)
 - Model fidelity and spatial specificity (physics + resolution)
 - Uncertainty quantification (ensemble simulations)
- Science questions for simulation campaigns:
 - Broad science questions to showcase multiple key capabilities and support many types of analysis
 - DECK and ScenarioMIP experiments will be done for each model version such simulations already support many types of analysis
 - Going beyond DECK experiments to advance actionable science goal and to understand model biases/behaviors

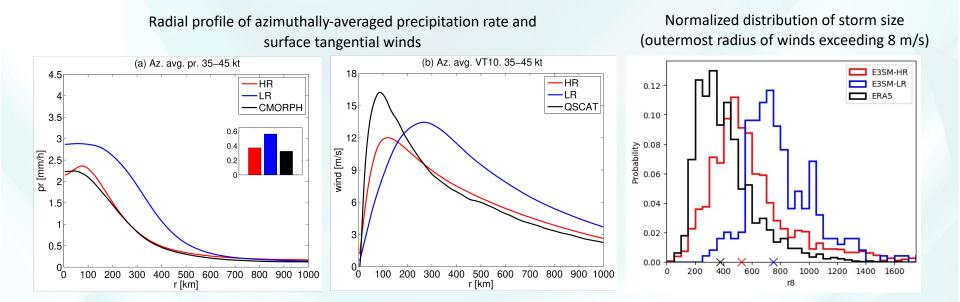
Push and Pull

Science questions

Model capabilities

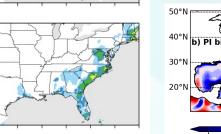
Progress in high resolution modeling

Capabilities:


- Low resolution (100 km)
- High resolution (25 km)

- Regional refinement
- Convection permitting (CP) resolution (3 km)
- ECP: Multiscale modeling framework: CRM embedded in low or high resolution E3SM

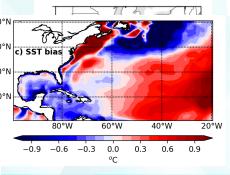
What can be gained by using high and CP resolutions? Examples: tropical cyclones (TCs) and mesoscale convective systems (MCSs)


Improvements from low to high resolution

Tropical cyclone structure is much more realistically simulated at high resolution

Quarterly metric report (March 2021)

TC Rx5day Percent Biases in TC genesis

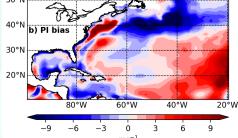


50°N 40°N

30°N

20°N

-8

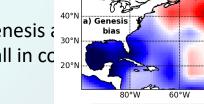


Obs

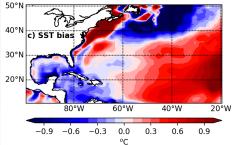
E3SM-HR

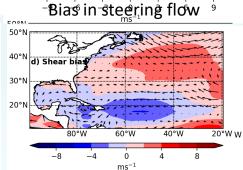
Biases in TC genesis a 30°N extreme rainfall in cc 20°N

Bias in genesis



60°W


ms⁻¹


40°W

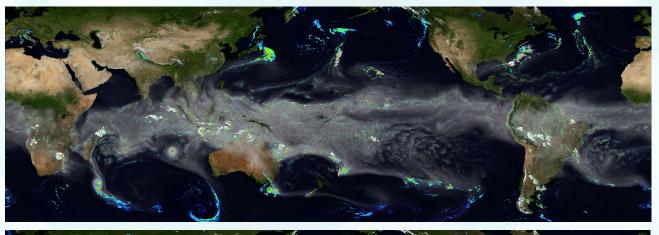
20°W

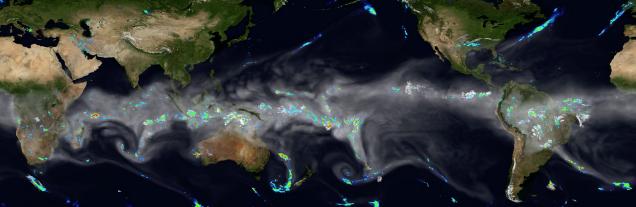
-0.6 -0.4 Bias in SSD.2 0.4 0.6

60°W

40°W

20°W

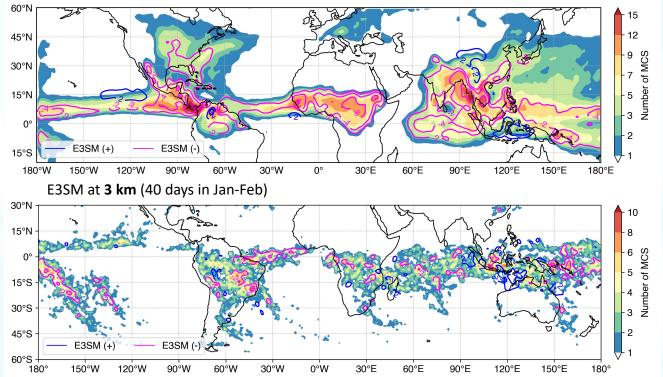

SST bias dominates the bias in TC genesis and combined with bias in steering flow, reduce likelihood of TC landfall particularly in the Gulf coast

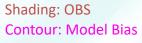

40°W

20°W

Improvements from high to CP resolution

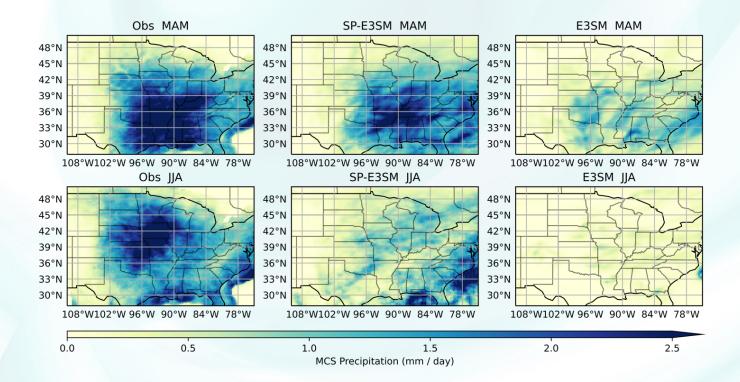
SCREAM DYAMOND2 simulation

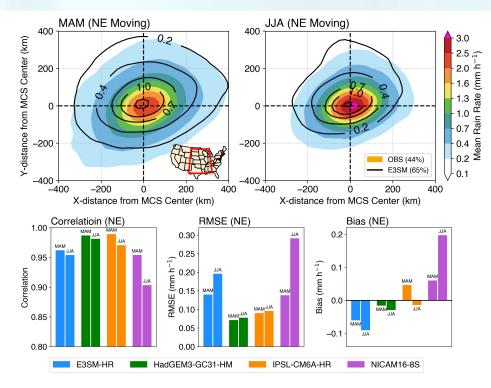



Observations

Improvements from high to CP resolution

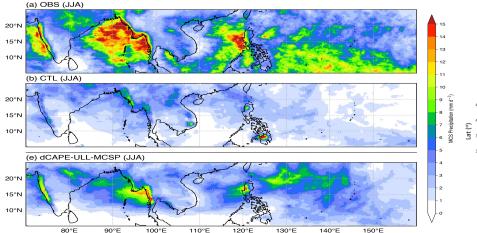
Much smaller biases of mesoscale convective system (MCS) number at 3 km compared to 25 km

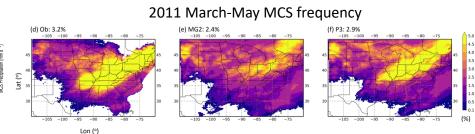

E3SM at 25 km (JJA) 20-year mean


Improvements from high to CP resolution

Much smaller biases of mesoscale convective system (MCS) number with MMF 25 km

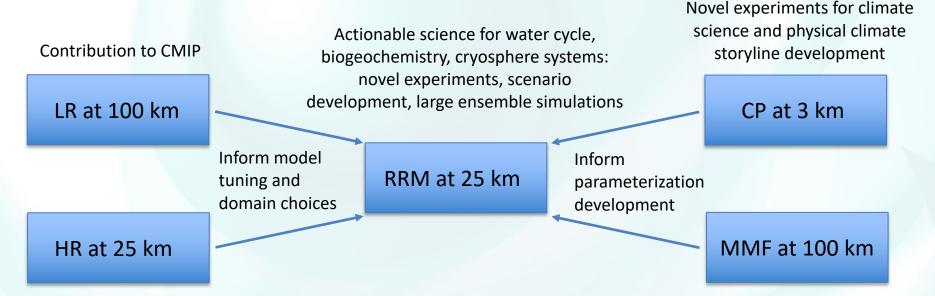
Is 25 km inherently too coarse to simulate MCSs?


Is it possible to reduce MCS bias at high resolution? Storms like TCs and MCSs are resolvable at 25 km


Can we improve modeling of MCS at high resolution?

- E3SM v1 AMIP simulations (3 years) at 25 km grid spacing with constant 2000 forcing and climatological SST all based on Zhang and McFarlane (ZM) deep convection scheme
 - o CTL (ZM scheme)
 - dCAPE-ULL (modified convective trigger) + mesoscale coherent structure parameterization (MCSP)

New model features reduce bias in MCS precipitation in the tropics



P3 (Predicted Particle Properties) improves simulation of MCS by increasing heavy rain rates

Quarterly metric report (September 2020)

Paths forward

- Merge all capabilities into a single code base v4
- Physics parameterizations: better / faster (physics-based and ML)
- Model calibration: techniques and workflows (e.g., ML/AI)
- Large ensemble modeling: approaches, workflows, in-situ analysis, data reduction
- Science questions, novel experiments, analysis

Preliminary thoughts on phase 3 priorities

- E3SM is at a juncture: Significant progress made with multiple approaches to high resolution modeling how do they contribute to overarching goal of actionable science?
- High resolution modeling at 25 km resolution using RRM may be a sweet spot for actionable science
 - With good physics and effective model calibration, large-scale circulation and extreme weather events can be well simulated at 25 km resolution to support planning and management of resources and evaluate the effectiveness of different decarbonization strategies and implications for societal resilience and well-being of our population
 - Need more efforts in model calibration and RRM domain selection
 - Need more efforts in scale-aware physics using both physical and ML approaches
 - Need to begin efforts in large ensemble modeling and methodological development
- Improving the paradigm of science questions, simulation campaign, and analysis
 - Broad science questions and simulation campaigns + branched off science driven experiments
- Targeted or goal-oriented collaborations with other DOE programs (e.g., model calibration and workflow, ML applications)?

Questions?