Climate responses to emissions reductions due to COVID-19

Hailong Wang¹, Mingxuan Wu¹, Yang Yang², Lili Ren², Kate Calvin¹

¹Pacific Northwest National Laboratory

²Nanjing University of Information Science and Technology

Acknowledgments:

- Susannah Burrows, Philip Cameron-Smith, Alan Di Vittorio, Mathew Maltrud, Xiaoying Shi, and many others on the E3SM project team
- Funding support by the EESM/ESMD program

Background and motivation

Global emission reductions estimated from mobility data during February-June 2020 (Forster et al., 2020)

- COVID-19 lockdown and restrictions led to sudden large reductions in emissions of GHGs and air pollutants
- Forster et al. (2020) found a short-term cooling (warming) associated with less GHGs (aerosols) based on a simple energy balance model
- Yang et al. (2020) show a surface warming effect over several NH continental regions in 2020 due to fast responses via aerosol-radiation and aerosol-cloud interactions based on AGCM simulations
- How about climate responses involving both fast and slow processes?

Model intercomparison on climate responses to COVID-restrictions on emissions (CovidMIP) (Lamboll et al., 2020, GMDD)

- What is the impact of emissions reductions on climate?
 - Well mixed GHGs (CO₂, CH₄, N₂O) and aerosol/precursors (SO₂, BC, OC, NMVOC, NO_x, NH₃)
- How do different recovery scenarios look?
 - Fossil stimulus (longer term increases in fossil emissions relative to baseline SSP2-4.5)
 - Moderate and strong green stimulus (longer term reductions in fossil emissions)
- E3SM participation
 - Near-term impact of COVID-lockdown emissions reductions
 - Branched from SSP2-4.5 at 1 Jan 2020 for 5 years
 - 10 ensemble members with perturbed initial conditions
 - Long-term impact of recovery scenarios
 - Branch from SSP2-4.5 at 1 Jan 2020 for 30 years (10 ensemble members)

Aerosol and precursor gas emissions reductions

- Emissions of aerosols and precursor gases are reduced in 2020-2022; mostly in SO₂ and BC
- Reductions in well mixed GHGs (CO₂, CH₄ and N₂O) also follow the protocol
- No change in land use
- NOx, NH₃ and O₃ changes are not considered in E3SMv1 simulations

Modeled global mean changes due to COVID

- Ensemble mean (±1σ) of anomalies, relative to baseline ssp2-4.5, from 12 individual ESMs (E3SM in blue)
- All models show a reduction in AOD, mostly greater than 1σ in 2020; AOD recovers by 2023.
- Positive surface downwelling SW in 2020-2021
- Global mean SAT and precipitation have a very small change
- E3SM does show a warming and increase in precipitation in 2020-2022

Regional AOD changes in the ESMs

AOD at 550nm

- ESMs agree that the largest mean (2020-2024) AOD reductions are in Asia
- E3SM doesn't have a strong AOD reduction
- Patches of AOD increases most likely due to changes in circulation and dust emissions
- Does the regional AOD reductions have a more significant impact on climate in Asia?

Mean changes in eastern and southern Asia

- Strong model agreement in the regional AOD changes (3 times stronger reductions than the global mean in 2020)
- The regional surface downwelling SW reduction in 2020 is also 3 times stronger than the global mean
- Most models indicate a less than 0.1°C warming, smaller than 1σ across ensemble members
- Less agreement on precipitation changes; E3SM and CanESM5 show a strong increase, likely related to circulation changes

Strong regional warming and cooling signals

- Several models, including E3SM and CESM, simulate a strong warming over northern Asia
- ACCESS-ESM and NorESM show strong cooling there
- Mixed signals for high latitudes as well
- Radiation and/or heat transport

Changes in surface downwelling SW radiation

- Increased SW in the Asia box, but with patches of decreases
- Larger spatial variability when ensemble number is smaller; Influence of cloud changes
- High-latitude surface radiative warming and cooling
- Reduced SW and warming in the Arctic in E3SM and other models indicate LW and heat transport changes
- Here shows the 2020-2024 mean, but there are interannual and seasonal variations

Annual changes in AOD, cloud drop number, and moisture in E3SM

- Significant reductions in anthropogenic AOD, but also large changes in dust
- Cloud drop number reduced in NH, consistent with aerosol changes
- Increases in precipitable water in NH
- Strong moisture convergence/divergence in some regions

E3SM changes in clear-sky net radiative flux

- Surface and atmospheric warming is consistent with net radiative forcing
- Strong regional changes related to moisture (tropics) and aerosols (mid-latitudes and deserts)

E3SM changes in all-sky net radiative flux

- Surface warming is consistent with net radiative forcing
- Strong regional (tropics) changes related to moisture and clouds

Comparison of **\Delta SAT** in E3SM and CESM

2030

- CESM has an immediate warming in 2020 but turns to cooling too soon, mostly at high latitudes
- E3SM shows persistent Arctic warming in 2020-2022

Regional patterns of precipitation change

- Strong changes in the tropics, consistent with cloud forcing and surface radiation changes
- Some signals over East Asia and South Asia but not consistent across models
- Indicates strong internal variability of modes (NAO, ENSO, etc.)

Precipitation responses in E3SM

- Strong precipitation changes over the tropics, indicating a northward shift of ITCZ in 2021-2022, consistent with NH warming
- Change from 2020 onward indicates a dominant impact of oceanic responses
- ITCZ shift is reversed in 2023, also consistent with warming changes
- Significant regional changes in mid-latitudes

Comparison of precipitation changes between E3SM and CESM (CMIP vs. AMIP type)

- Changes in ITCZ between E3SM and CESM are not exactly in phase
- AMIP simulations (Yang et al., 2020) show similar precipitation change in 2020 to E3SM
- Interestingly, signals of ITCZ in 2020 are less clear in CESM

b) 2021

a) 2020

c) 2022

Summary

- E3SM participated in the CovidMIP, as a result of very rapid response of the ESM community
- Initial results show interesting responses in aerosol loading, radiation, temperature and precipitation to the COVID lockdown and restrictions
- Regional responses on shorter timescales are much stronger than global means
- Further efforts in analyzing the simulations, especially the E3SM and CESM results on
 - Atmospheric circulation change and record-breaking 2020 summer precipitation anomaly over eastern China
 - Mechanisms behind the high-latitude changes in response to the COVID lockdown
 - Global dust lifecycle in response to the COVID lockdown

Additional information on the CovidMIP

- Current plans on papers/projects by participants:
 - https://drive.google.com/drive/folders/1m5WA9dpCL8o63ENOv_JH1JrzKlt200J-?usp=sharing
 - CovidMIP simulations are available on ESGF
 - https://wcrp-cmip.github.io/CMIP6 CVs/docs/CMIP6 experiment id.html
 - Search "ssp245-cov" and you should see all 6 experiments
 - Thanks to Sterling Baldwin, Jill Zhang and Renata McCoy for helping publish the E3SM datasets on ESGF
 - DAMIP: https://esgf-node.llnl.gov/search/cmip6/?institution_id=E3SM-Project&activity=DAMIP
 - ScenarioMIP: https://esgf-node.llnl.gov/search/cmip6/?institution_id=E3SM-Project&experiment_id=ssp245
- SSP2-4.5 forcing conditions (input files) are available