

Quantifying, Attributing, and Understanding Time Step Sensitivities in the E3SMv1 Atmosphere Model

Hui Wan¹, Shixuan Zhang¹, Phil Rasch¹, Vince Larson^{2,1}, Kai Zhang¹, Xubin Zeng⁴, Huiping Yan³, Heng Xiao¹, Balwinder Singh¹

¹Pacific Northwest National Laboratory, Richland, WA, USA ²University of Wisconsin - Milwaukee, Milwaukee, WI, USA ³Nanjing University of Information Science and Technology, Jiangsu, China ⁴University of Arizona, Tucson, AZ, USA

Pacific

E3SM All-hands Presentation, January 21, 2021

PNNL is operated by Battelle for the U.S. Department of Energy

Background and motivation

Various significant, undesirable numerical artifacts noticed in E3SM and similar models, both global and regional, at traditional and much higher resolutions

SciDAC project aiming at reducing time-stepping error and in atmospheric physics parameterizations in E3SM

- Investigations using simplified models demonstrated the feasibility and benefits of addressing time-step convergence issues
- From proofs of concept to the "real EAM"
 - **Priorities?** \bigcirc
 - **Relevance to day-to-day** Ο development focused on reducing model biases?

0

-1

-2

-3

-4

-5

log₁₀(RMSE)

See also Wan et al. (2015, JAMES)

Wan et al. (2020, JAMES), see also Vogl et al. (2020, JAMES)

Shortening EAMv1's time steps to 1/6 of the default causes a systematic increase in model biases

Model biases in 10-year mean present-day climate

Simulation setup • F 2000 compset ne30 ne30 (1-degree) Source of obs. data: AMWG diagnostics

The degradation in model fidelity is comparable in magnitude to the improvement from v0 to v1

Model biases in 10-year mean present-day climate

Wan et al. (2020, GMD Discussion, doi: 10.5194/gmd-2020-330)

Simulation setup F 2000 compset ne30 ne30 (1-degree) Source of obs. data: **AMWG diagnostics**

Key signatures of sensitivity include systematic drying of the troposphere and decreases in cloud fraction when time steps are shortened

Relative humidity

Differences in 10-year averages, $\Delta t/6 - v1$ _CTRL

Total cloud cover

Net cloud radiative effect (CRE)

Global mean: -22.11 (d) DT/6 - CNTL Global mean: 3.04 (e) (DT/6 – CNTL) / CNTL Global mean: -11.68 Wan <u>et al. (2020, G</u>MD Discussio<u>n, doi: 10.5194/gmd-2020-330</u>

"Perhaps unsurprisingly to those familiar with model development, the largest deviations can be attributed to the parametrizations of clouds and moist convection. **Perhaps less predictable is how and where these deviations are..."** — anonymous reviewer

- "How and where"
- "By what and why"

Our experiments: time step sizes in various components of EAMv1 are varied separately or in combination to attribute time step sensitivities

These simulations reveal key impactors in different cloud regimes

Differences in 10-year averages of shortwave cloud radiative effect

These simulations reveal key impactors in different cloud regimes (cont'd)

Differences in 10-year averages of longwave cloud radiative effect

Going beyond attribution — understanding and addressing the root causes

This presentation: discussing process coupling as an example

10-year mean total CRE differences caused by more frequent coupling between cloud macro/microphysics and rest of model (f)

10

Sequential splitting is the primary process coupling method used in EAM

Without substepping

Sequential splitting can cause strong oscillation of atmospheric state within each time step

Tighter coupling can help alleviate the problem

B В

. . . В

Change in coupling frequency can lead a shift of the mean state

ΔCRE , v1_Dribble – v1_CTRL

Why decreases in stratocumulus?

Sequential splitting results in a direct impact of coupling step size on the atmospheric state seen by CLUBB

Positive feedback between cloud-top cooling and stratocumulus amount enhances the model's response to coupling frequency

Diagnostics from inside CLUBB support our hypothesis

- Weaker turbulence and buoyancy flux in the boundary layer
- Decreased convective stability at cloud top

Single-column simulation further confirms the role of radiation

- DYCOMS-II RF01 case
- No deep convection
- No horizontal advection
- With or w/o microphysics, with or w/o shortwave radiation, model shows the same qualitative behavior

Impact of process coupling appear to be time and location dependent - why?

The proposed mechanism is expected to be valid only when radiative cooling is sufficiently strong to result in a negative out-of-subcycle T-tendency

Seasonal averages of out-of-subcycle T-tendency

Monthly mean out-of-subcycle

Conclusions so far

• Time step sensitivity is non-negligible in EAMv1's present-day climate simulations

- Inconvenient for model developers focusing on model fidelity
- Indication of significant time-stepping error needing to be addressed
- Sources and root causes of time step sensitivity can be identified and addressed
- Process coupling is an important area to put more efforts in

On-going and future work

Coupling between cloud macro-/microphysics and rest of model

Deep convection and its interaction with dynamics etc.

Teaser slide: deep convection, time steps, and timescales

10-year annual mean \(\Delta\) CRE corresponding to a factor-of-6 reduction of $\Delta t/\tau$

Can the $\Delta t/\tau^{c}$ ratio explain our observed time step sensitivities? Yes, but there is more to it.

by changing Δt

Model Dev

by changing τ

Global mean: 1.56 90E 135E 180 135W 90W 45W 45F -2 0 2 4 -4 6