
Quantifying, Attributing, and Understanding 
Time Step Sensitivities in the 
E3SMv1 Atmosphere Model

E3SM All-hands Presentation, January 21, 2021

Hui Wan1, Shixuan Zhang1, Phil Rasch1, Vince Larson2,1, Kai Zhang1, 
Xubin Zeng4, Huiping Yan3, Heng Xiao1, Balwinder Singh1

1Pacific Northwest National Laboratory, Richland, WA, USA
2University of Wisconsin - Milwaukee, Milwaukee, WI, USA
3Nanjing University of Information Science and Technology, Jiangsu, China
4University of Arizona, Tucson, AZ, USA



manuscript submitted to Journal of Advances in Modeling Earth Systems

tion of the convergence rate. This result confirms our expectation that simulations of 12 h or620

less are sufficiently short HW:to avoid chaos in the resolved-scale motions.so that temporal discretiza-621

tion plays a dominant role in determining differences between the ensembles, while the impact622

of the atmospheric motion’s chaotic nature on solution convergence (see discussion in Teix-623

eira et al., 2007) HW:remains negligible.624

6.4 Results with large-scale condensation625

For the simplified model with large-scale condensation, Figure 4a presents the solution626

errors and self-convergence rates after 1 h, where results from the baseline model are shown627

in HW:bluered and those HW:from a properly converging configurationusing the revised splitting are shown628

in HW:redblue. Like in the dynamical-core-only case, the different ensemble members give very629

similar results, from which one can confidently conclude that the self-convergence rate in the630

baseline model is significantly lower than 1. In the right panel of Figure 4, histograms of the631

absolute temperature difference in individual grid boxes (cf. Eq. 45) are shown for the first632

ensemble member of each model configuration integrated with �tphys = 8 s; all grid boxes633

in the 3D domain were included in the calculation. The two histograms differ in their right-634

most portions, suggesting that the largest cell-wise |�T | values are responsible for the degraded635

convergence seen in Figure 4a for the baseline model. In Figure 5a, temperature RMSE val-636

ues and self-convergence rates of ensemble member 1 are shown for different subsets of grid637

boxes sorted according to |�T | between the 8 s and 1 s simulations; the figure further con-638

firms that the larger RMSE values and slower convergence rate in the baseline model seen in639

Figure 4a are dominated by a small percentage of “problematic” grid boxes with very large640

|�T |. This feature is consistent with the CAM5 results shown in Wan et al. (2015). In con-641

trast, in the properly converging model HW:that used the revised splitting, results in different642

subsets of grid boxes all converge at first-order (Figure 5b). HW:TheseThe problematic grid boxes643

are the focus of our analyses shown in the next subsections.644

Figure 4. (a) Solution RMSE and self-convergence after 1 h of integration using the baseline model
HW:(blue)(red) and the model with revised splitting HW:(red)(blue). Like in Figure 3, color shading shows the
two standard deviation range of the RMSE values of 6 ensemble members; the numbers in parentheses are
the 6-member mean and standard deviation of the convergence rates. (b) Histograms of |�T | in individual
grid boxes between the simulations using �tphys = 8 s and �tphys = 1 s, shown for ensemble member 1 after
1 h of integration. The baseline model HW:(blue) and the model with revised splitting HW:(red) are described in
Sections 3.3 and 3.4, respectively.
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Solution self-convergence in 1-h 
simulations with simplified cloud physics
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Background and motivation

Various significant, undesirable numerical artifacts noticed in E3SM and similar 
models, both global and regional, at traditional and much higher resolutions

Wan et al. (2020, JAMES), see also Vogl et al. (2020, JAMES)

manuscript submitted to Journal of Advances in Modeling Earth Systems

Figure 9. Left column: zonally averaged (a) total cloud cover, (b) longwave cloud radiative effect
HW:(LW CRE), and (c) shortwave cloud radiative effect HW:(SW CRE) in climate simulations conducted
using the CAM4 physics parameterization suite. HW:BlueRed lines are results from the original model that uses
Eq. (26); HW:redblue lines are results obtained with the revised splitting (Eq. 33). Right column: differences
between the two simulations (revised splitting minus original splitting). Solid lines are 10-year averages;
color shading indicates the HW:2�two standard deviation range HW:where � is the standard deviation of the annual
averages. HW:Both simulations shown in this figure used the B1⇤ option (cf. Eq. 25HW:) for the B term defined
by Eq. (7).
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Zonal and annual mean cloud fraction 
simulated with CAM4 physics suite

Time-stepping error and 
solution self-convergence

Desired

EAM/CAM, actual 

• Investigations using simplified models 
demonstrated the feasibility and benefits of 
addressing time-step convergence issues

SciDAC project aiming at reducing time-stepping error and in 
atmospheric physics parameterizations in E3SM

See also Wan et al. (2015, JAMES)

• From proofs of concept to the “real EAM”
o Priorities?
o Relevance to day-to-day 

development focused on 
reducing model biases?
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Shortening EAMv1’s time steps to 1/6 of the default causes a systematic 
increase in model biases

Model biases in 10-year mean present-day climate

v1_CTRL
∆t/6

Simulation setup
§ F_2000 compset
§ ne30_ne30 (1-degree)
Source of obs. data: 
AMWG diagnostics
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The degradation in model fidelity is comparable in magnitude to the 
improvement from v0 to v1

Wan et al. (2020, GMD Discussion, doi: 10.5194/gmd-2020-330)

Simulation setup
§ F_2000 compset
§ ne30_ne30 (1-degree)
Source of obs. data: 
AMWG diagnostics

Model biases in 10-year mean present-day climate

v1 ∆t/6



Figure 5. Left column: 10-year mean, zonally averaged air temperature (T), specific humidity (Q), relative humidity (RH), and cloud fraction

(f) in simulation v1_CTRL. Middle column: differences between v1_All_Shorter and v1_CTRL. Right column: relative differences with

respect to v1_CTRL. Statistically insignificant differences are masked out in white. The simulation setups are described in Section ??,

Table ?? and Table ??, group I. The flowcharts can be found in Figures ?? and ??a.
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Key signatures of sensitivity include systematic drying of the troposphere 
and decreases in cloud fraction when time steps are shortened

Differences in zonal mean 10-year averages, ∆t/6 – v1_CTRL 

Relative humidity Cloud fraction
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Significant changes are seen in subtropical low-clouds, which has 
potential implications on the prediction of climate change

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Primitive draft wording for various things

January 2020

1

Figure 3. Left column: 10-year mean geographical distribution of total cloud cover (CLDTOT, upper
row) and total cloud radiative effect (CRE, lower row) in simulation CNTL. Middle column: differences
between DT/6 and CNTL. Right column: relative differences with respect to CNTL. Statistically insignificant
differences are masked out in white. The simulation setups are described in Section 2.2 and Table 1.

Figure 4. Comparison of the 10-year-mean climate simulated by CNTL and DT/6 with various reanalyses
and satellite products. The upper panel shows relative errors in the EAM-simulated global averages. The
lower panel shows the relative error in the simulated geographical distributions, as measured by the centered
root-mean-square differences (cRMSD) between model results and the observations normalized by the root
mean square of the observations (RMSOBS). The cyan and orange bars correspond to CNTL and DT/6, re-
spectively. The long names of the physical quantities labeled along the x-axis and the sources of observational
data are listed in Table 2.
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Differences in 10-year averages, ∆t/6 – v1_CTRL 

Total cloud cover Net cloud radiative effect (CRE)

Wan et al. (2020, GMD Discussion, doi: 10.5194/gmd-2020-330)
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Our experiments: time step sizes in various 
components of EAMv1 are varied separately 
or in combination to attribute time step 
sensitivities

“Perhaps unsurprisingly to those familiar with model 
development, the largest deviations can be attributed to 
the parametrizations of clouds and moist convection. 
Perhaps less predictable is how and where these 
deviations are…"  — anonymous reviewer

�tadv = 5 min �tremap = 15 min

Time step sizes used by the default EAMv1 (v1_CTRL)

�trad = 60 min

�tCPLmain = 30 min

�tdeepCu = 30 min

�tCPLmain = 30 min

�tmacmic = 5 min

�tmacmic = 5 min
�tCPLmain = 30 min

Misc. processes 
and �t

�tmacmic = 5 min

�tmacmic = 5 min

�tmacmic = 5 min

�tmacmic = 5 min

�tmacmic = 5 min

�tmacmic = 5 min

�tmacmic = 5 min

�tmacmic = 5 min

�tmacmic = 5 min

�tmacmic = 5 min

�t = x min State update with step size �t 

�t = x min Tendency calculation with step size �t 

�t = x min Tendency calculation and state 
update with step size �t 

Legend for the physics part:

Legend for the dynamics part:
D

yn
am
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s
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ys
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s

Figure 2. Time step sizes used by the default EAMv1 at 100 km resolution. Detailed description can be found in Section ??.

5

• “How and where”
• “By what and why”
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These simulations reveal key impactors in different cloud regimes

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11. As in Figure ??, but showing the longwave (LW, top row), shortwave (SW, middle row), and total (bottom row) CRE.

21

Differences in 10-year averages of shortwave cloud radiative effect

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11. As in Figure ??, but showing the longwave (LW, top row), shortwave (SW, middle row), and total (bottom row) CRE.

21

(a) (b)

(c) (d)

(e) (f)

Figure 17. Attribution of the 10-year mean CRE differences shown in the left column of Figure ??. Left: differences between v1_Dribble

and v1_CTRL revealing the impact of coupling between the subcycled cloud macro-/microphysics and the rest of EAM. Right: differences

between v1_CPL+DeepCu_Shorter and v1_Dribble revealing the impact of step sizes used by various other parameterizations (deep convec-

tion, gravity wave drag, various aerosol processes) and the coupling among them. White indicates statistically insignificant differences. The

simulation setups are summarized in Tables ?? and ??. Flowcharts are shown in Figures ??, ??, and ??b.

28

Coupling between cloud macro-
/microphysics and rest of model 

Shallow cumulus and stratiform 
cloud macro/microphysics

(a) (b)

(c) (d)

(e) (f)

Figure 17. Attribution of the 10-year mean CRE differences shown in the left column of Figure ??. Left: differences between v1_Dribble

and v1_CTRL revealing the impact of coupling between the subcycled cloud macro-/microphysics and the rest of EAM. Right: differences

between v1_CPL+DeepCu_Shorter and v1_Dribble revealing the impact of step sizes used by various other parameterizations (deep convec-

tion, gravity wave drag, various aerosol processes) and the coupling among them. White indicates statistically insignificant differences. The

simulation setups are summarized in Tables ?? and ??. Flowcharts are shown in Figures ??, ??, and ??b.

28

Deep convection and its interaction 
with dynamics etc.

All major processes
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Figure 11. As in Figure ??, but showing the longwave (LW, top row), shortwave (SW, middle row), and total (bottom row) CRE.
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These simulations reveal key impactors in different cloud regimes (cont’d)

Differences in 10-year averages of longwave cloud radiative effect

Coupling between cloud macro-
/microphysics and rest of model 

Shallow cumulus and stratiform 
cloud macro/microphysics

Deep convection and its interaction 
with dynamics etc.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11. As in Figure ??, but showing the longwave (LW, top row), shortwave (SW, middle row), and total (bottom row) CRE.

21

All major processes
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Going beyond attribution — understanding and addressing the root causes

10-year mean total CRE differences caused by more frequent 
coupling between cloud macro/microphysics and rest of model 

(a) (b)

(c) (d)

(e) (f)

Figure 13. Attribution of the 10-year mean CRE differences shown in the left column of Figure 11. Left: differences between v1_Dribble

and v1_CTRL revealing the impact of coupling between the subcycled cloud macro-/microphysics and the rest of EAM. Right: differences

between v1_CPL+DeepCu_Shorter and v1_Dribble revealing the impact of step sizes used by various other parameterizations (deep convec-

tion, gravity wave drag, various aerosol processes) and the coupling among them. White indicates statistically insignificant differences. The

simulation setups are summarized in Tables 1 and A1. Flowcharts are shown in Figures 1, 12, and A2b.

23

https://doi.org/10.5194/gmd-2020-330
Preprint. Discussion started: 26 October 2020
c� Author(s) 2020. CC BY 4.0 License.

This presentation: discussing process coupling as an example
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Sequential splitting is the primary process coupling method used in EAM

(b) Isolated sequential splitting (c) Informed sequential splitting

B A

State n

Tendency

State n

St
at

e 
n+

1

B A

Intermediate state

State n
St

at
e 
n+

1

(a) Parallel splitting

B A

State n

State n

St
at

e 
n+

1

State update
+ Limiter

Tendencies

Figure 1. Flowchart showing different process coupling methods for integration the generic 2-process differential equation (1).

2.1 Coupling methods in the absence of subcycles15

We start the description with simpler cases where different processes are integrated using the same step size �t. Denoting the

discrete solution at time instances t= n�t and t= (n+1)�t by  n and  n+1, respectively, the following methods can be

used to advance the solution from time level n to n+1:

– Parallel splitting (Figure 1a), also referred to as process splitting in Williamson (2002) and parallel splitting in Beljaars

et al. (2004), Beljaars et al. (2018), and Donahue and Caldwell (2018), is the method of discretizing different processes20

independently, all starting from the same model state:

Discretizing process A in isolation:
 n,A � n

�t
= A

�
 n, n,A� (2)

Discretizing process B in isolation:
 n,B � n

�t
= B

�
 n, n,B� (3)

Advancing solution in time:  n+1,⇤ =  n +
⇥
A
�
 n, n,A�+B

�
 n, n,B�⇤�t , (4)

Applying limiter if needed:  n+1 = L
�
 n+1,⇤� (5)25

Two time levels of  are listed in the parentheses following A or B in the equations above to reflect the fact that each

process can be integrated using an explicit or implicit method. Numerical error resulting from discretizing the individual

processes can lead to unphysical features in the numerical solution of equations (2) or (3), for example negative tracer

concentrations or spurious maxima or minima. Numerical treatments like limiters, clipping or fixers that are used to avoid

such artifacts can be employed as part of the discretization methods used for the individual processes; those limiters etc.30

not explicitly spelled out in the equations above as the focus of the paper is on process coupling. On the other hand,

an additional limiter might be needed when tendencies from A and B are added together to update  , as the individual

processes are discretized independently. This need of an additional limiter is highlighted by equation (5).

2
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With substepping



12

Sequential splitting can cause strong oscillation of atmospheric state 
within each time step

St
at

e 
n+

1

Intermediate state

A

B
B

B
B
…

J 
su

bc
yc

les

State n

EAMv1 default

Global mean concentration of stratiform cloud liquid 
(CLDLIQ) over 5 time steps (30 subcycles)

B = CLUBB + MG2
A = all other processes (grid 
resolved and unresolved)
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Tighter coupling can help alleviate the problem

State n

Tendency

State n

St
at

e 
n+

1
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B

B
B
…
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les B

Global mean concentration of stratiform cloud 
liquid (CLDLIQ) over 5 time steps (30 subcycles)
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Change in coupling frequency can lead a shift of the mean state

∆CRE, v1_Dribble – v1_CTRL

v1_CTRL

v1_Dribble

Reference simulation using smaller ∆t 
and no sub-stepping

Peruvian stratocumulus region,
4-hour time series of CLDLIQ (700-1000 hPa)  

Why decreases in 
stratocumulus?
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Sequential splitting results in a direct impact of coupling step size on the 
atmospheric state seen by CLUBB

Cloud fraction

Cloud fraction

Amount of 
cooling over 
30 min

Amount of 
cooling over 
5 min

Temperature increments caused
by other processes

Shorter coupling interval

Less cooling applied to the 
state seen by CLUBB 
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Positive feedback between cloud-top cooling and stratocumulus amount 
enhances the model’s response to coupling frequency

Shorter coupling interval

Less cooling applied to the 
state seen by CLUBB 

Weaker turbulence

Reduced stratocumulus 
amount, less cloud liquid
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Diagnostics from inside CLUBB support our hypothesis
• Weaker turbulence and buoyancy flux in the boundary layer
• Decreased convective stability at cloud top

2

Cloud fraction

TKE in v1_CTRL
TKE in 
v1_Dribblle

Peak season average 
in Peruvian 
stratocumulus region, 
EAMv1 results

Single-column simulation further 
confirms the role of radiation

• DYCOMS-II RF01 case
• No deep convection
• No horizontal advection
• With or w/o microphysics, with or w/o shortwave radiation, 

model shows the same qualitative behavior
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Impact of process coupling appear to be time and location 
dependent - why?

10-year mean ∆CRE caused by more frequent coupling 
between cloud macro/microphysics and rest of model 

(a) (b)

(c) (d)

(e) (f)

Figure 13. Attribution of the 10-year mean CRE differences shown in the left column of Figure 11. Left: differences between v1_Dribble

and v1_CTRL revealing the impact of coupling between the subcycled cloud macro-/microphysics and the rest of EAM. Right: differences

between v1_CPL+DeepCu_Shorter and v1_Dribble revealing the impact of step sizes used by various other parameterizations (deep convec-

tion, gravity wave drag, various aerosol processes) and the coupling among them. White indicates statistically insignificant differences. The

simulation setups are summarized in Tables 1 and A1. Flowcharts are shown in Figures 1, 12, and A2b.

23

https://doi.org/10.5194/gmd-2020-330
Preprint. Discussion started: 26 October 2020
c� Author(s) 2020. CC BY 4.0 License.

Annual cycle of CRE over the 
Peruvian stratocumulus region

Month of year
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The proposed mechanism is expected to be valid only when radiative cooling 
is sufficiently strong to result in a negative out-of-subcycle T-tendency

Seasonal averages of out-of-subcycle T-tendency 

Peru California
Monthly mean out-of-subcycle

T-tendency v.s. ∆CRF

∆CRF (v1_Dribble – v1_CTRL)

Te
m
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tu
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 te
nd
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/d
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Conclusions so far

• Time step sensitivity is non-negligible  in EAMv1’s present-day climate simulations
§ Inconvenient for model developers focusing on model fidelity
§ Indication of significant time-stepping error needing to be addressed

• Sources and root causes of time step sensitivity can be identified and addressed

• Process coupling is an important area to put more efforts in
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On-going and future work

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 11. As in Figure ??, but showing the longwave (LW, top row), shortwave (SW, middle row), and total (bottom row) CRE.

21

Coupling between cloud macro-
/microphysics and rest of model 

Shallow cumulus and stratiform 
cloud macro/microphysics

Deep convection and its interaction 
with dynamics etc.

All major processes

More advanced 
process coupling 
methods

Numerics inside 
CLUBB; macro-
/microphysics 
time steps

Closure assumption 
and numerical 
coupling
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Teaser slide: deep convection, time steps, and timescales

10-year annual mean ∆CRE corresponding 
to a factor-of-6 reduction of ∆t/𝜏

Can the ∆t/𝜏 ratio explain 
our observed time step  
sensitivities? Yes, but 
there is more to it. 

(a)

(b)

(c)

Figure 14. 10-year mean CRE differences between v1_CPL+DeepCu_Shorter and v1_CPL+DeepCu+Tau_Shorter reveal the impact of a

reduced ratio of �tdeepCu/⌧ without model step size changes. White indicates statistically insignificant differences. The simulation setups

are summarized in Tables 1 and A1. The two simulations correspond to the same flowchart shown in Figure A2b.
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https://doi.org/10.5194/gmd-2020-330
Preprint. Discussion started: 26 October 2020
c� Author(s) 2020. CC BY 4.0 License.

by changing 𝜏by changing ∆t
(a) (b)

(c) (d)

(e) (f)

Figure 13. Attribution of the 10-year mean CRE differences shown in the left column of Figure 11. Left: differences between v1_Dribble

and v1_CTRL revealing the impact of coupling between the subcycled cloud macro-/microphysics and the rest of EAM. Right: differences

between v1_CPL+DeepCu_Shorter and v1_Dribble revealing the impact of step sizes used by various other parameterizations (deep convec-

tion, gravity wave drag, various aerosol processes) and the coupling among them. White indicates statistically insignificant differences. The

simulation setups are summarized in Tables 1 and A1. Flowcharts are shown in Figures 1, 12, and A2b.
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