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Water Cycle Group — Phase Il Goals

« v1 Simulation Campaign
* v1 Analysis

* v2 Model Development

Water Cycle - Science Drivers

How does the hydrological
cycle interact with the rest of
the human-Earth system on
local to global scales to
determine water availability
and water cycle extremes?



Phase Il Goals - v1 Simulation Campaign

Table 1. Water cycle simulations for v1.

Simulation Duration Resolution Notes

Pre-industrial (1850) control 500 years LR DECK v

Historical transient (1850- 165 years per LR DECK - minimum of 3, ideally 5 ensemble v 5 members

2014) ensemble member members.

Abrupt 4xCO2 150 years IR DECK v/ Extended to 300 years

1%lyr CO2 increase 150 years LR DECK v

AMIP (1970-2014) 45 years LR DECK - possibility of starting earlier (1870) and ~ 3 members, 165 years each
performing multiple ensemble members

1950 control 50 years LR, HR HighResMIP like v

1950-2050 (all forcings) 100 years LR, HR HighResMIP like - 3 ensemble members LR complete

1950-2050 (GHG-only) 100 years LR, HR HighResMIP like - 3 ensemble members HR near completion

AMIP (2000-2010) 10 years Y degree, global Atmosphere-only global high-resolution simulation . .

AMIP (2000-2010) 10 years Y degree, RRM Atmosphere-only high-resolution simulation over Completed test simulations,
North America using RRM but effort redirected.

Additional simulations

* AMIP simulations to compute ERF.

* LR simulations with HR tunings to explore impact of resolution.
* Continental RRM (1/4 deg) atmosphere simulations.
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Orbe et al (2020, J Climate): Representation of Modes of Variability
in Six U.S. Climate Models

QBO: equatorial zonal wind
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Hu et al (2020, J Climate): Role of AMOC in Transient Climate
Response to Greenhouse Gas Forcing in Two Coupled Models

E3SMv1 and CESM2 have nearly identical equilibrium

climate sensitivity (ECS = 5.3 K, Gregory regression). 1% CO, runs
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Hoch et al. (2020, JAMES): MPAS-Ocean Simulation Quality for
Variable-Resolution North American Coastal Meshes
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Tang et al (2019, GMD): Regionally refined test bed in E3SM
atmosphere model version 1 (EAMv1) and applications for high-

resolution modeling
JJA Precipitation
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Analysis of future scenario runs (SSP5-8.5)
All-forcing and GHG-only forcing
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Actionable metrics: moisture availability
Focus on USGS Hydrological Units Maps (HUC2)
Metrics led by Bryce Harrop (PNNL)
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Actionable metrics

SST variability metric | ny TLIRER T

' i \ vy T
Led by LeAnn Conlon (LANL) , Skill scores
Nearing finalization v . N

0.60

Metric assesses E3SM ability to
reproduce observed SST

0.55

variability and influence of SST : . | Z:
variability on CONUS precipitation ’ | [ W
(HUC2 basins). Model SST variability skill (over oceans) .
Model skill in relationship between SST 03 | fo30

variability and precipitation (HUC2 regions) Zj ZEZ

Remaining work

— Apply new metric to E3SMv1 LR and HR historical simulations

— Incorporate to E3SM-diags

— Submit paper describing relationship between SST variability and precipitation in E3SM



Phase Il Goals - v2 Model Development

E3SMv2 Water Cycle in a nutshell

Evolution from v1, but nevertheless many improvements.

New regionally refined capabilities for coupled simulations.
Getting close to finalize model and start simulation campaign.
Compared to v1: “faster and better”.



Regionally Refined Meshes
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LCF

“Faster and better”
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Ocean, sea ice improvements

« Climatological ice thickness
— v1 (left) ice too thick in central Arctic and Labrador Sea
— v2 “fallback ocean” improves central Arctic ice
— v2 “target ocean” improves Labrador sea bias
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Transport error with tuned parameters

Performance improvements |8 |
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New land and river features
=y e Land and river models now on a _ !
gﬁ:} e ;\ Q Reservoir common grid (1/2 or 1/8°), separate floodplain | channel
Tk regulation from atmosphere (“tri-grid”). f_)%fk‘
/! N\ River network * Water management and two-way \ =
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Coordination with external DOE funded projects

»  Modes of Pacific Variability (Pl: di Lorenzo): Luke Van Roekel has been working with that
project to setup the large ensemble and secure sufficient computer and storage
resources. Will set the stage for future E3SM core efforts.

 I|nitialized Prediction (Kirtman + Meehl): Jon Wolfe and Luke Van Roekel assisted in the
spin up of the low-res ocean for prediction experiments.

« University of Arizona — Delivered and tested new coupler surface flux routines.

« InterFACE: Andrew Roberts is the ESMD lead and is working to make sure
developments smoothly feed between E3SM and InterFACE. Mat Maltrud and Luke Van
Roekel are also key staff on InterFACE

« COMPOSE (SciDAC): Andrew Bradley. SL transport in the atmosphere, helped with bug
fixes in the ocean.

« CICE Consortium: Andrew Roberts and Elizabeth Hunke have communicated critical
developments and bug fixes from the CICE Consortium to E3SM.




Coordination (cont’d)

« 1CoM: E. Hunke, A. Roberts, L. Conlon, T. Zhou, J. Wolfe, G. Bisht all coordinating with
project to ensure developments will be E3SM ready.

- EAGLES: Kai Zhang and Hailong Wang. Aerosols and cloud interactions.

« PCMDI-SFA (RGMA): Steve Klein and Mark Zelinka have been sharing their cloud
feedback diagnostics with Xue Zheng and Chris Golaz and helped interpreting them.

- ECP: E3SM-MMF (PI: Mark Taylor). Walter Hannah: key contributions to PG2
development. Jayesh Krishna and Danqging Wu: SCORPIO, E3SM's new |/O
infrastructure.

- CMDV-RRM: Water Cycle v2 grid, improved convective trigger, v1 analysis.

 ESGF-LLNL: E3SM data publication and curation; CDAT (Community Data Analysis
Tools) Python package.




Questions?



