

E3SM Science Goals and Progress

L. Ruby Leung

DOE E3SM Review, November 9-10, 2020

Outline

- Science goals ----- implementations
- Implementing science plan through project phases
- Progress towards science goals
- Measure of success actionable metrics

Science goals define our strategies and implementations

Goals	Science Drivers	Strategies	Implementations
Understand Earth system variability and change	Water cycle: water availability, storms, floods and droughts Biogeochemistry: temperatures, heat extremes, wildfires Cryosphere: sea level rise, coastal inundation	 Push the high-resolution frontier of Earth system modeling Represent natural, managed and manmade systems across scales Quantify uncertainty using ensemble modeling 	 Regional refinement using unstructured grids (v2) Global cloud resolving modeling (v4 - exascale) Coupled human-earth system modeling (v2) Coastal modeling (v3/v4) Large-ensemble modeling (v4 - exascale) Use of ML/AI (v4)
Simulations, predictions, and projections to support DOE's energy mission			
Prepare for and overcome the disruptive transition to next era of computing			
Science que	stions → Model de	evelopment> Sime	ulation and analysis

Implementations through project phases

Phase 1 (2014-2018)

- Development of v1 from v0 based on CESM1
- Science questions focus on model behaviors:
 - <u>Water cycle</u>: impacts of resolution (1° vs. 0.25°); contrasting effects of forcing (all vs. GHG)
 - <u>BGC</u>: structural uncertainty in nutrient limitation; implications to carbon-climate feedback
 - <u>Cryosphere</u>: resolution sensitivity of modeling ocean-ice shelf interactions

Phase 2 (2018-2022)

- Development of v2 (incremental improvement in model capability and computational performance)
- Parallel next generation development (NGD) of v3/v4
- Science questions are more use-inspired addressed using RRM:
 - <u>Water cycle</u>: contrast local vs. large-scale impacts of human activities on floods and droughts
 - <u>BGC</u>: evaluate impacts of different energy futures on extremes
 - <u>Cryosphere</u>: impact of atmosphere, ocean, and sea-ice on Antarctic ice sheet melt rate

Progress towards science goals

- Development of E3SM v1 and v2, and v1 science simulation campaigns and analysis are documented in the **AGU E3SM special collection** with 50 papers
- Modeling challenges addressed in the special collection
 - Water cycle:
 - Advances and uncertainties in modeling clouds and precipitation
 - Representing impacts of human activities on terrestrial water cycle
 - Coupled physical climate simulations at LR and HR
 - Biogeochemistry:
 - Representing nutrients in terrestrial system
 - Uncertainty in modeling biogeochemistry
 - Coupled earth system simulations at LR
 - Cryosphere:
 - Resolution sensitivity of ocean-ice simulations
 - Asymmetric response of ice shelf melt rates to variability of ocean forcing
- Analysis of **resolution and uncertainty** will be highlighted next

Does higher resolution improve modeling of water cycle?

Does higher resolution improve modeling of cryosphere?

Southern Ocean velocity magnitude E3SM at 60-30km E3SM at 30-10km OBS (1/6°)

- Melt rate and many ocean and sea ice features are much better simulated at high resolution: support use of RRM
- Wind biases increase at higher resolution – a coupled model challenge

(Comeau et al. and Hoffman et al. in prep)

How does structural uncertainty affect estimates of carbon feedback?

- Including nutrients (N, P) reduces estimates of carbon feedback
- Despite the large structural difference between CTC and ECA, the impact on carbon feedback appears small

(Burrows et al. 2020 JAMES)

E3SM v2 new features advancing use-inspired science

Regional refinement meshes: (1) focus on regions of interest: North America and Antarctica; (2) 5x – 7x computational saving enabling a larger ensemble of simulations

Coupling irrigation-river-water management

Measure of success: actionable metrics

Water cycle

- Water availability
- Sea surface temperature

Biogeochemistry

- Extreme temperature
- Energy resources

Cryosphere

- Ice sheet freshwater flux
- Antarctic atmospheric forcing

Summary

- E3SM has well-defined fundamental and use-inspired science goals and a multi-pronged strategy implementable through project phases
- E3SM takes an iterative approach to defining specific science questions and experimental designs (model behaviors \rightleftharpoons use-inspired science)
- Significant progress has been made to advance fundamental and useinspired science (AGU E3SM special collection and other publications)
- Success measurable using actionable metrics: use-inspired end goals (energy mission) supported by physical relationships (with drivers and forcings)