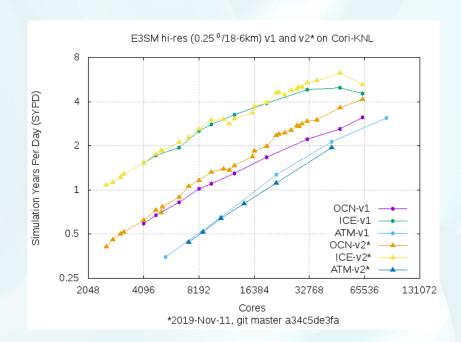
Performance Overview

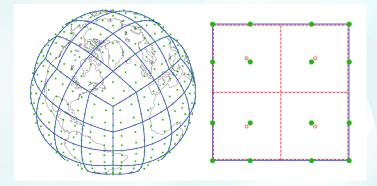
Phil Jones, Sarat Sreepathi on behalf of Performance Group:

Oksana Guba, Noel Keen, Youngsung Kim, Jayesh Krishna, Azamat Mametjanov, Mark Taylor, Matt Turner, Pat Worley, Min Xu

Performance Group Goals

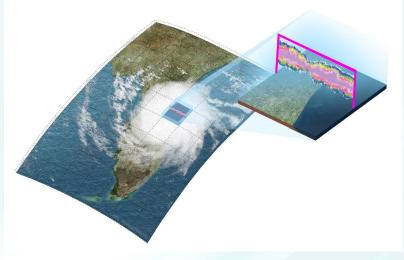

- Improve throughput on current sims/machines
 - Scalability, threading, CPU, bug fixes
 - E3SM/BER clusters
 - Anvil (Broadwell), CompyMcNodeFace (Skylake), Chrysalis (AMD Epyc)
 - Cori and Theta (Intel Phi)
- Prepare for new architectures: GPU strategy
 - Porting, portability, feasibility
 - Best use of accelerators
 - Focus on new code, two programming models
 - Summit (IBM P9/Nvidia GPU)
 - Perlmutter (EPYC/Nvidia GPU, no spinning disk)
 - Aurora (Intel Xeon with Xe GPU, memory innov)
 - Frontier (AMD EPYC, AMD Radeon GPU)
 - Longer term non-GPU?
- Performance infrastructure
 - Standard benchmarks, profiling, performance tools

Performance Metrics


- Throughput on standard hi-res benchmark cases
 - F-case (atm/sfc) 0.25 deg
 - G-case (ocean/ice), RRS 18-6
 - With/without I/O
- I/O benchmarks
- Improvements in node performance (CPU)
 - 2x improvement due to atm changes
 - Incremental improvement in others
 - More improvement "in pipeline"
 - Does not include GPU work
- Substantial improvement in I/O
 - SCORPIO
 - 10x and more

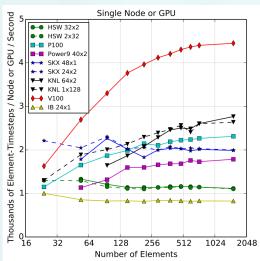
	PIO1/pnetcdf PIO2/pnetcdf		PIO2/adios	
High-res G-case Summit	12.36 GB/sec	27.89 GB/sec (BOX) 2.64 GB/sec (SUBSET)	129.58 GB/s	
High-res G-case Cori	1.68 GB/sec	4.94 GB/sec (BOX) 2.86 GB/sec (SUBSET)	18.52 GB/sec	
High-res F-case Summit	536.15 MB/sec	3.04 GB/sec (BOX) 1.31 GB/sec (SUBSET)	12.45 GB/sec	
High-res F-case Cori	100.37 MB/sec	1031.03 MB/sec (BOX) 663.09 MB/sec (SUBSET)	4.86 GB/sec	

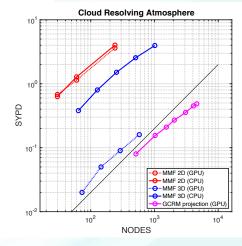
CPU Improvements for Campaigns


- I/O
- Scalability
 - MPI collectives, MPI environment vars
 - Memory use
 - Initialization at scale
- Threading
 - Bugs
 - New threading model in ocean (little gain, but less fragile)
- Atmospheric physics column configuration
 - Runtime vs compile-time
 - Reduced number of columns per element (PhysGrid)
 - Related chunk cost measurements
- Other Bugs
 - Compiler bugs and flags
 - Non-deterministic behavior
 - Bad nodes

GPU Performance

- Porting and portability
 - 3 GPUs: Nvidia (CUDA), AMD (HIP), Intel (one API)
 - Kokkos
 - Data model + Loop-level abstractions
 - Template metaprogramming
 - Must adopt C++, rely on Kokkos team for back-end
 - OpenACC/OpenMP
 - Directives for both data mgmt, loop execution
 - Only portable approach for Fortran, vendor must supply
 - Issues
 - High occupancy still difficult
 - Both approaches require significant work for optimal implementation
 - Ultimate programming model still not clear, DSLs?
- Utilize GPU differently
 - Pushing high resolution (3km)
 - Ensembles: each at lower node counts but more efficiency
 - MMF and similar approaches (CRM, LES)
 - Asynchronous execution to split work across devices

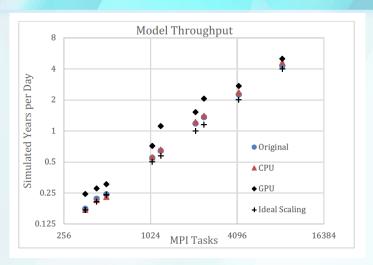

Leveraging for GPU and Advanced Architectures


- Much advanced work part of NGD and "ecosystem" efforts
 - Shared staff, integration/testing
- New programming models and GPU approaches
 - NGDs: NH atm, SCREAM, Software and Algorithm
 - Exascale Computing Project (ECP): dycore, MMF/superparam, GPU ocean/ice, I/O
 - SciDAC CANGA: Exploration of Asynchronous Many-Task runtimes
- New algorithms
 - Software/Algorithm NGD: new ocean barotropic solver (2x speedup of solver)
 - SciDAC: new transport algorithms (2x atm w/ physgrid, now applying to ocean)
 - SciDAC DEMSI: discrete-element sea-ice model
 - SciDAC CANGA: new coupling, remapping algorithms

Atmosphere

- HOMMEXX dycore
 - Kokkos
 - NGD + Prior work
- NH atmosphere
 - New physics in Kokkos (SCREAM/NGD)
 - IMEX, energy fixer/diagnostics
- Old v1 physics
 - Feasibility study porting MAM
 - OpenACC
 - Estimate of 2 man-years
 - Decided not to pursue
- Superparameterization
 - ECP project
 - Run cloud-resolving models on GPU
 - Initial results are promising

HOMMEXX



Ocean/Ice

- Sea-ice
 - Threading/vector improvements
 - Initial GPU porting with OpenACC/OpenMP
 - Velocity solver
 - Comm dominated difficult to achieve gains
 - SciDAC/ DEMSI
 - New discrete-element model

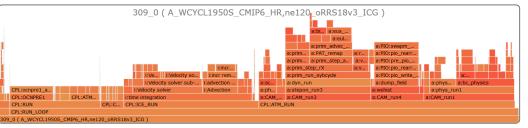
Ocean

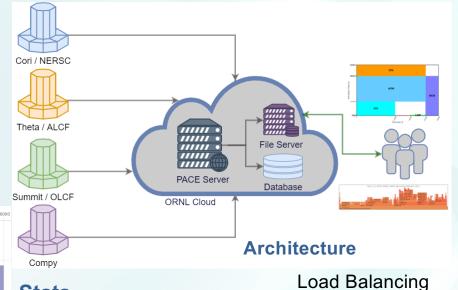
- ECP: Ocean OpenACC port
- Converted vel solver, tracer adv, eos, tridiag
- Up to 30x speedup when min data txfr
- Estimate 3-10x for final version, resident
- MPAS refactor, new ocean NGD
 - MPAS framework/style inhibiting progress
 - Embarking on significant refactor

MPAS-O throughput on Summit for GPU, CPU. Only 40% code converted.

MPI Tasks	Speedup for all GPU code	Baroclinic velocity (all)	Baroclinic velocity (excl. data transfers)	Tracer Advection	Equation of State	Vmix Solvers
8400	1.4	1.2	5.4	1.5	2.0	0.9
4200	1.7	1.7	9.3	1.9	1.7	1.0
2400	4.2	4.7	20.4	5.0	3.5	2.2
2100	2.1	2.3	14.0	2.4	1.8	1.1
1200	5.7	7.0	31.9	7.1	4.0	2.4
1050	2.5	2.8	17.9	2.8	1.8	1.3
504	2.8	3.1	18.9	3.2	1.8	1.3

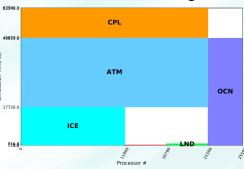
Performance Infrastructure


- Timing libraries
 - GPTL, native, hardware counters (eg via PAPI)
- Automated collection
 - Timing data
 - Allocation status
 - PACE: performance analytics
- Kernel extraction
 - KGen

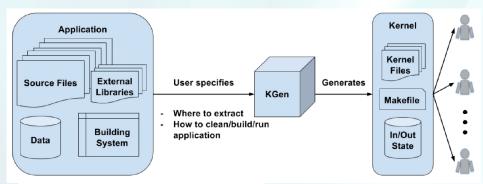

Performance Analytics for Computational Experiments

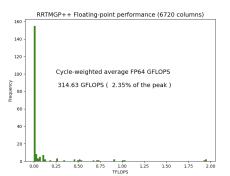
Infrastructure to provide executive summary of experiments performance.

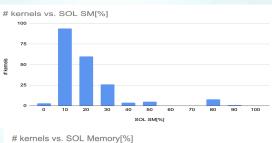
- Collect performance of all simulations
- Central hub of performance data
- Interactively deep-dive as desired
- Track performance benchmarks of interest
- Facilitate performance research

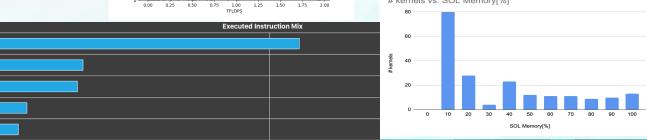


Stats


- 184 users
- 10 platforms
- 36,683 experiments
 (Only other db only 70)
- 1 million input files




https://pace.ornl.gov


Kernel Extraction and Characterization

- Kgen tool
 - Extracts kernel and relevant data
 - Used for detailed characterization with realistic data
 - Vendor interactions
 - GitHub: E3SM-Project/KGen
- Detailed GPU characterization
 - Example: RRTMG++
 - Many kernels, diff behavior
 - Integer calculation (indexing)
 - Memory bandwidth
- Kernel classification

Summary

- Supporting science campaigns
- Good progress on GPU porting
 - Together with NGD, ECP
- Developed new tools and tracking benchmarks
- Staffing still an issue finding, attracting and retaining people