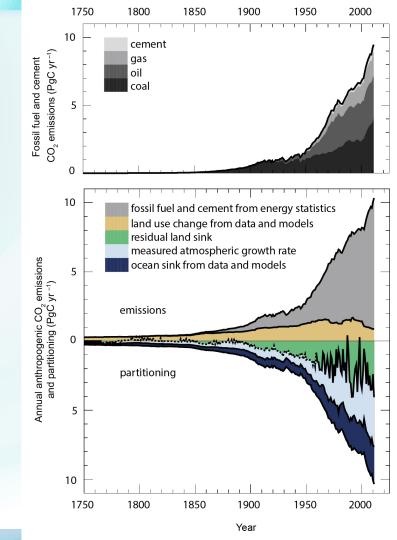


The E3SM Biogeochemistry Group

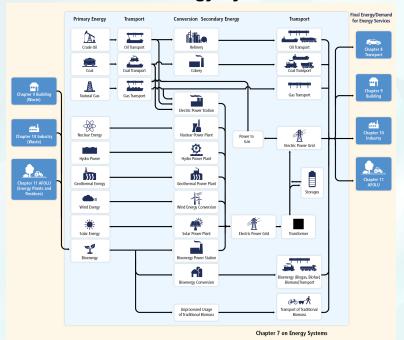
Kate Calvin and Susannah Burrows (on behalf the whole E3SM BGC team)



Outline

- Progress toward phase 2 goals:
 - V1 Simulations
 - V2 development and integration
- Actionable Science Metrics
- Coordination with externally funded projects

Goal: Understand Earth system variability and change


- The RCP8.5 results in:
 - Increased air temperature,
 - Soil drying in North America,
 - Increased forest fires in the US, and
 - Permafrost thaw.
- These changes could reduce terrestrial carbon storage and ocean carbon uptake.
 - Nutrient availability limits biological CO₂ uptake in both land and ocean.
 - The land sink is substantially modified by human-driven land use change (e.g., conversion of forests to crops).

Goal: Simulations, predictions, and projections to support DOE's energy mission

- Earth system changes have implications for energy, including:
 - Increases in energy use for air conditioning,
 - Changes in electricity generation (thermoelectric, hydropower, wind, and solar),
 - Changes in crop yields and bioenergy potential,
 - Energy system disruptions (e.g., power outages).

The Energy System

Source: IPCC AR5 WG3 Ch7

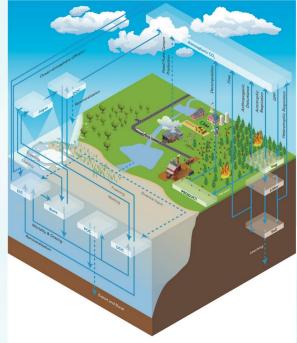
Science Questions

- Overarching Question:
 - How do the biogeochemical cycles interact with other Earth system components to influence energy-sector decisions?

V1 Simulations

Science Questions

- Overarching Question:
 - How do the biogeochemical cycles interact with other Earth system components to influence energy-sector decisions?
- V1 Question:
 - What are the effects of nitrogen and phosphorous on climate-biogeochemistry interactions, and how sensitive are these interactions to model structural uncertainty?


Carbon and nutrient cycles in the DOE's Earth System Model

• Objective:

- Introduce, describe and evaluate the introduction of carbon and nutrient cycle simulations into E3SM (E3SMv1.1-BGC).
- Approach:
 - Evaluate the model using observational benchmarks.
 - Characterize ecosystem-climate responses in a standard set of simulations, including quantifying the effects of structural uncertainty and nutrient limitations.

• Results:

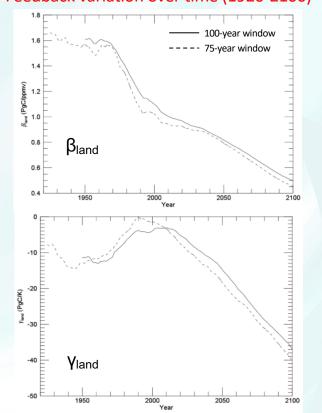
• The evaluation showed significant improvements to the land-based carbon cycle compared to previous models. Important biases were identified in the ocean carbon cycle, which will be improved in future versions of E3SM.

E3SMv1.1-BGC allows researchers to model the Earth's carbon cycle and how it interacts with land use and energy systems.

Burrows, et al., 2020. "The DOE E3SM v1.1 biogeochemistry configuration: description and simulated ecosystem-climate responses to historical changes in forcing," Journal of Advances in Modelling Earth Systems, 12, e2019MS001766. https://doi.org/10.1029/2019MS001766.

Estimating future ecosystem-climate feedbacks using the E3SM v1.1 BGC model Feedback variation over time (1920-2100)

Objective


• Quantify the effects of changes in CO₂ concentration (top figure) and climate (bottom figure) on terrestrial carbon uptake

Approach

- Run a series of simulations isolating CO₂ and climate, following the C4MIP protocol
- Repeat these simulations and analysis with alternative representation of BGC and without P limitations (not shown)

Results

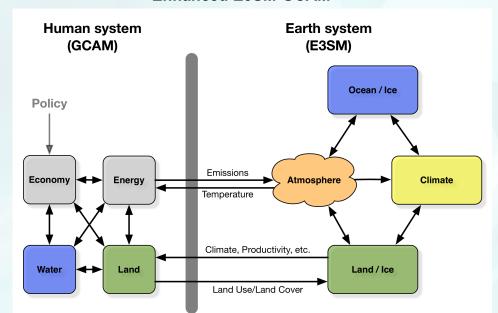
- CO₂ fertilization feedback (β_{land}) weakens over time due to increasing nutrient limitation, resulting in less C uptake.
- Climate feedback (γ_{land}) strengthens over time as increased respiration overtakes additional nutrient mineralization, resulting in more C release.

Progress: v1 Papers

Title (or topic)	Lead Author	Status
The DOE E3SM coupled model v1.1 biogeochemistry configuration: overview and evaluation of coupled carbon-climate experiments	Susannah Burrows	Published
Investigating controls on sea ice algal production using E3SMv1.1- BGC	Nicole Jeffery	Published
Implications of Phosphorous on the carbon cycle	Peter Thornton	Analyzing simulation results
Nutrient limitations on the carbon cycle	Qing Zhu	Analyzing simulation results
Observationally-inferred nutrient limitations and perturbation responses	Bill Riley	Planning/Scoping
Analysis of BGC impacts on atmospheric dynamics	Bryce Harrop	Analyzing simulation results
The implications of structural uncertainty on carbon cycle dynamics	Ben Bond- Lamberty	Not Started

V2 Development and Integration

Science Questions


- Overarching Question:
 - How do the biogeochemical cycles interact with other Earth system components to influence energy-sector decisions?
- V2 Question:
 - What are the implications of different energy futures for the biogeochemical cycle through changes in land use land cover, water availability, and extreme events?

Energy Developments for v2

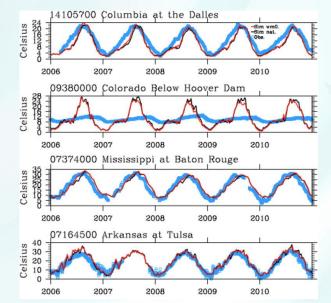
- Couple the Global Change Analysis Model (GCAM) with the E3SM
 - Implement a new component in the coupler
 - GCAM to E3SM: LULCC, CO₂ emissions, Non-CO₂ emissions/concentrations

= Complete, () = In Progress

E3SM to GCAM: changes in land productivity

Enhanced E3SM-GCAM

Land/River Model Developments for v2


- Developments for the core simulations:
 Soil erosion
 Stream temperature*
 Vegetation scheme
 Variable soil thickness
- Developments for sensitivity simulations:

 Vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES)*
 Crop model, with explicit representations of maize, wheat, and soybean

* Stream temperature and FATES will be run in offline mode for v2

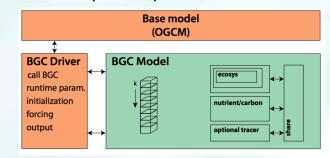
= Complete, 😑 = In Progress

Stream Temperature

Simulated (red, black) and observed (blue) stream temperature for different river basins. Simulated temperatures are with (red) and without (black) water management.

Li, H.-Y., et al. (2015), Modeling stream temperature in the Anthropocene: An earth system modeling approach, JAMES.

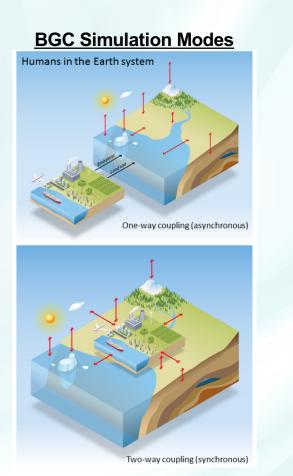
Ocean, Ice, and Atmosphere Developments for V2

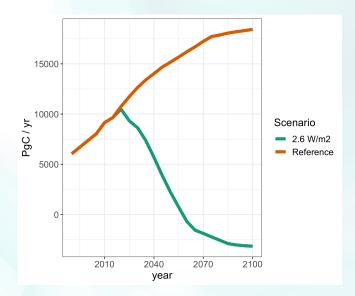

• Ocean & Ice:

Incorporate MARBL, a modular framework for representing biogeochemistry, into MPAS-O
Improvements to ocean physics, including Redi mixing
Improved river nutrient inputs
Black carbon and dust deposition on sea ice
Super cycling of tracer advection

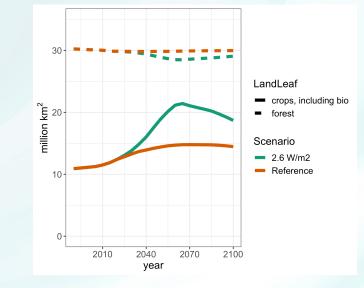
Atmosphere:

Fixes to conserve carbon


Marine Biogeochemistry Library (MARBL) Schematic

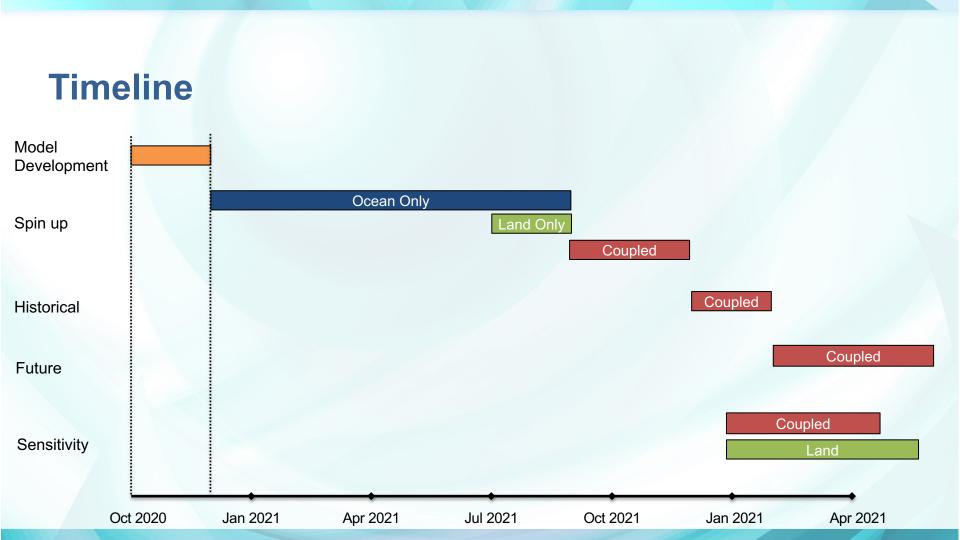

Simulation Plan

- Model configuration:
 - Regionally-refined model, branching from water cycle
 - Active biogeochemistry in the atmosphere, land, ocean, and sea ice
- Simulation modes:
 - One-way coupling (CMIP-like)
 - Two-way coupling, with human-Earth system interactions



Simulation Plan

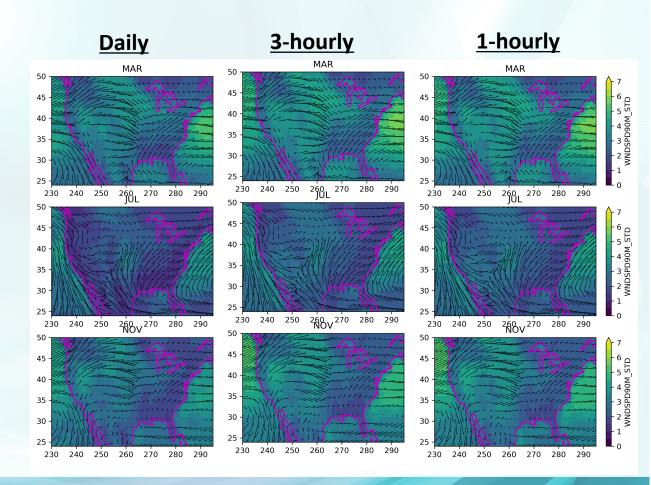
Fossil Fuel CO₂ Emissions



Cropland and Forest Cover

Simulation Plan

- To understand the effect of model features and forcing factors, we will perform a series of land-only, ocean-only, and coupled model sensitivity experiments, including simulations:
 - With different initial conditions,
 - With and without FATES (offline land model only),
 - With and without explicit crops, and
 - With and without RRM.


Actionable Science Metrics

Energy Metrics

- Stream temperature
- Wind speed:
 - Output at hub height
 - Saved at 3-hourly frequency

Coordination with externally funded projects

Coordination with other ESMD projects

- FAN ammonia emissions (Peter Hess)
 - PR completed and handed off to E3SM for integration.
- Improved dust emissions and iron coupling (Natalie Mahowald, Tami Bond)
 - Scientifically complete; component-level testing underway by E3SM POC.
- Fire emissions of BC/OC, phosphorus (Jim Randerson)
 - Scientifically complete, but no PR yet.
- Initialization of ocean BGC (Francois Primeau)
 - They are developing accelerated spin-up of the ocean carbon cycle (based on previous work) and also extending to the land carbon cycle
- InterFACE (Joel Rowland)
 - Benthic BGC being implemented by E3SM staff member, with plans to use in v3 model

Coordination with other BER projects

- RUBISCO (RGMA funded)
 - We use ILAMB to benchmark ELM and plan to use IOMB in the future to benchmark marine BGC, both of which are RUBISCO-developed.
 - We coordinate with RUBISCO on simulations, as they run the E3SM BGC model as part of their project
- Global Change Intersectoral Model System (MSD funded)
 - We use GCAM in the E3SM v2 model, which is developed under GCIMS
 - We are starting to think about the potential for coordinated experiments in the future.
- NGEE-Tropics (TES funded)
 - We coordinate FATES development and analysis.

