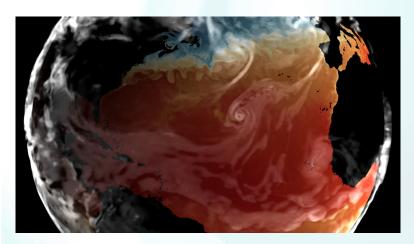
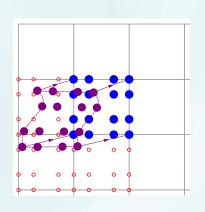


Mark Taylor Sandia National Laboratories

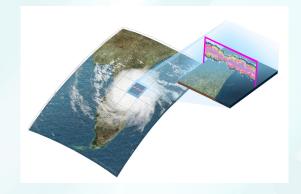
E3SM Nonhydrostatic Atmosphere NGD (Caldwell) E3SM-MMF Exascale Computing Project. (Taylor) E3SM Performance Group. (Jones, Sreepathi) CMDV-SM project (Salinger)

> ESMD PI Meeting (Virtual) October 26, 2020 SAND2020-10336 C




Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

E3SM Model Development



- BER: E3SM Project
- ~70 FTEs, 8 labs + Universities
- Energy Exascale Earth System Model
- DOE-SC science mission: Energy & water issues looking out 40 years
- Ensure E3SM will run well on upcoming DOE exascale computers

- ~10 FTEs over multiple projects
- Large focus on new algorithms

- ASCR ECP Project
- ~10 FTEs
- E3SM-MMF: "superparameterization"

E3SM Exascale strategy: Running on GPUs

- All new DOE SC machines will be GPU based
- 2021: NERSC Perlmutter
 - ~1500 nodes with 4 GPUs each
 - ~3000 CPU nodes
- 2021/2022: OLCF Frontier
 - 30MW
 - Each node with 4 GPUs
- 2021/2022: ALCF Aurora
 - Intel GPU nodes

Key Points for Earth System Models

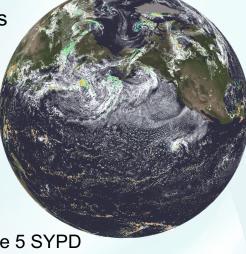
- CPU performance (per watt) has nearly stagnated
 - 2x speedup over the last 6 years
- GPUs: 3x speedup (per watt) over today's CPUs
 - But only in the high-workload regime
 - Need major code rewrite or refactor
- Traditional climate simulation campaigns are run in the lowworkload regime
- E3SM: Focus on several new types of simulation campaigns where GPUs will allow us to run simulations not possible on CPU systems

High Workload Simulations for GPUs

Earth System Model running at 5 SYPD for ~300 simulated years

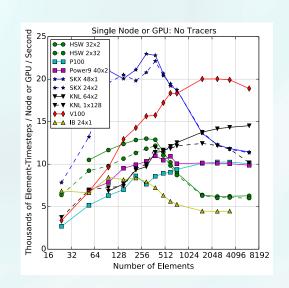
A \$5M commodity CPU cluster is most efficient

Ultra high resolution "Cloud Resolving" model

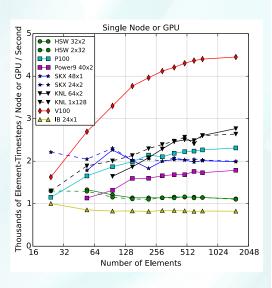

- BER: E3SM's "SCREAM" project
- On track for E3SM V3 (2021-2022)
- Typical INCITE award: 10-30 simulated year

Increase "local" complexity

- ECP: E3SM-MMF project: "superparameterization"
- Achieve many aspects of a cloud resolving simulation and also achieve 5 SYPD
- Running on Summit since OLCF Early Access Program


Large Ensembles

- Each ensemble member is running slower but more efficiently on GPU systems.
- E3SM V4 capability: large ensembles on GPU systems



Detailed single node comparisons

- Atmosphere dynamical core with and without tracers (~1/2 the atmosphere mode)
- Shows slow improvement in CPUs going back to 2012
- Gives upper bound on possible performance: doesn't include. MPI and other overheads
- Dynamical core only: minimal benefit from GPUs
- Dynamical core + tracers: Large benefit from GPU, but only in high work load regime.
- Hope to soon add newer CPUs (Epyc, Fugaku ARM) and new GPUs

Atmosphere dynamical core

Atmosphere dynamical core with 40 tracers

Bertagna et al., HOMMEXX 1.0: A Performance Portable Atmospheric Dynamical Core for the Energy Exascale Earth System Model, GMD 2019

Timeline and GPU Readiness

- V2: 2019 code freeze, 2020 begin simulations
 - CPU: All major simulation campaigns, Fortran code base
 - GPU: NH atmosphere dycore. partial: MPAS-O, ATM physics
- V3: 2022 code freeze, 2023 begin simulations
 - CPU: All major simulation campaigns, Fortran code base
 - GPU: MPAS components (Fortran/openMP)
 - GPU: SCREAM (prescribed aerosols) NH atmosphere
 - GPU: MMF ("super-parameterization") atmosphere
- V4: 2025 code freeze, 2026 begin simulations
 - Full Earth System Model running on both CPU and GPU systems

NGGPS cloud resolving (3km) benchmark Scaling to all of Summit

- Standardized benchmark from the National Weather Service
- Atmosphere model with realistic configuration and idealized physics
- Highlights from several generation of computers and Global clould resolving models (GRCMs)
- Double precision results (reported real*4 results ~1.6x faster)
- Results inline with Linpack/HPGC comparison

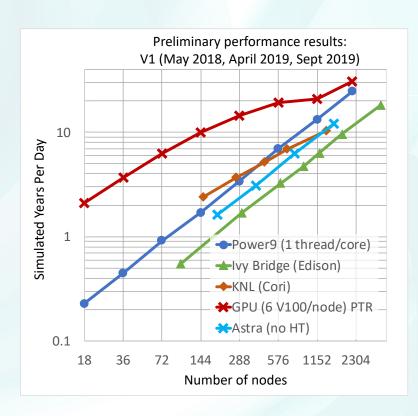
	GCRM Model	Computer (Linpack rating)	NGGPS 3km Benchmark
	NOAA FV3	Edison (2.6PF)	0.16 SYPD
	HOMME (CESM)	TaihuLight (125 PF)	0.34 SYPD
	E3SM's HOMMEXX_NH	Summit (200 PF)	0.97 SYPD (1.14 hydrostatic)

L. Bertagna et. al., SC '20: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2020

Closing thoughts

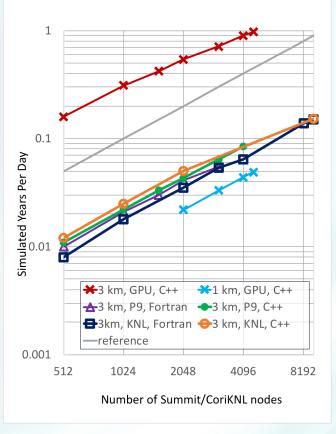
- CPU systems are getting better (Fugaku)
- GPU systems are getting better (Frontier, Aurora)
- E3SM V3: Two approaches to cloud resolving simulations made possible by GPU architectures
- E3SM V4 will run efficiently on both architectures
 - hopefully well prepared to adapt to post-Exascale hardware

Backup Slides


Performance & Portability Strategy

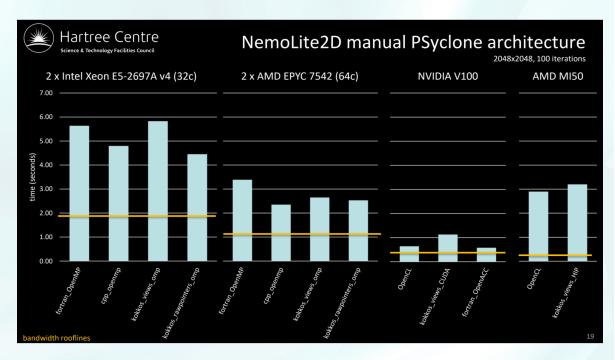
- Large investments in two approaches
 - Both strategies require complete code refactor or rewrite, with careful coding to obtain competitive performance
 - Takes us several years per major component
- C++/Kokkos:
 - Rewriting from scratch allows us to take the opportunity to: replace legacy code, introduce low level unit and property tests
- Fortran/openMP
 - Death of Fortran continues to be predicted
 - GPU Support now lagging substantially
 - Vectorization (for CPUs) remains superior

Benchmarks: High-Res Climate, Strong scaling

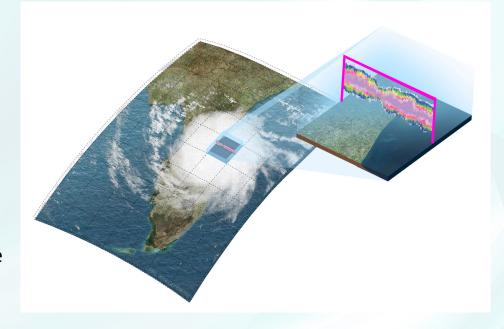

Consider the E3SM v1 model running on Summit:

- Atmosphere dycore benchmark (25km, 72L, 40 tracers).
- In strong scaling limit, GPU systems cannot outperform CPUs
- If you are willing to run slower, GPUs provide significant advantage
- E3SM high-res coupled model (projections)
 - 5 SYPD: no GPU benefit
 - 0.5 SYPD: GPUs more efficient
- How will this change in the future?

NGGPS 3km Benchmark: Strong scaling (per node)


- C++/kokkos and Fortran codes competitive IBM P9
- C++/kokkos code has hand-vectorized every loop, leading to excellent KNL performance.
- Summit node with 6 V100s obtains ~
 12x speedup (for ~6x more power?)
- 1km resolution also running well, but throughput is impractically low

L. Bertagna et. al., SC '20: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2020


NemoLite 2D results (single node/GPU)

- From Sergi Siso, Multicore 10 Workship PSyclone presentation.
- Showing performance of several programming model backends
- Roughly 2x speedup in CPU nodes, from Intel Ivy Bridge to AMD EPYC
- V100 about 3x faster than EPYC node

ECP Project: E3SM-MMF

- E3SM-MMF approach addresses structural uncertainty in cloud processes by replacing traditional parameterizations with cloud resolving "superparameterization" within each grid cell of global climate model
- Super-parameterization dramatically increases arithmetic intensity, making the MMF approach ideal for GPU acceleration.
- Exascale + MMF approach will make it possible for the first time to perform climate simulation campaigns with some aspects of cloud resolving resolutions.

Three overarching science drivers

U.S. energy sector is vulnerable to:

- Decreasing water availability
- More intense storm events and flooding
- Increasing temperatures
- Sea level rise

- Water cycle: How does the hydrological cycle interact with the rest of the human-Earth system on local to global scales to determine water availability and water cycle extremes?
- Biogeochemistry: How does the biogeochemical cycle interact with other Earth system components to influence energy-sector decisions?
- Cryosphere systems: How do rapid changes in cryospheric systems evolve with the Earth system and contribute to sea level rise and increased coastal vulnerability?

Challenge: water cycle, biogeochemistry, and cryosphere systems interactions cannot be ignored for predictions or projections at longer time scales