

What are the challenges in using ML/AI for parameterization development? What are some opportunities to address these challenges?

- Can data-driven ML be used for parameterization development in Earth system models?
 - 1. Neural networks don't know physics laws. How to make them obey physics laws?
 - 2. How to ensure it can stably integrate with time in ESMs?
- How robust and interpretable are ML-based parameterizations?
 - 1. How to break the black box and peek inside?
 - 2. Are machine learned relationships between input and output physically meaningful?
- Should ML be used under current parameterization framework or be used to replace the current framework?
 - 1. How complex should ML-based emulators be (architecture, e.g. random forest, DNN, CNN, ResNet, ..., depth etc.)?
- **Opportunities**?
 - **Big data (observations, MMFs, GCRMs)**

Advances in computer algorithms, particularly advanced NN's and hardware

DNN

200 40200 60₄₀₂₀₀ ⁸⁰604'200 806 400 90N-8 600 60 90N 0 800 ³¹ 61 90N 60E 200 180 120W 60W 120E Ó 0 31 60 90N 3 3C 60N 40 200 6 ₃ 30N 60 40 200 9 6 3(0-80 60 40 x_1 200 9 6(30S n_1 80 60 x_2 400 w_1 9(605 80 270K 600 x_3 90S · W_2 h_3 . 120E . 180 120W 60E 60W 0 0 800 x_4 W_3 h_4 60E 120E 180 120W 60W 0 Ò $h_3 = w_1 x_2 + w_2 x_3 + w_3 x_4$ x_5 h_5 **ResNet** *x*₆ h_6

Sensitivity and Comparison of NN Structures

- Use of CNN reduces the loss by ~50% (compare ResCu and ResDNN-22)
- Advantage of ResNet vs. CNN is not significant for a 22-layer net (but is appreciable for deeper nets)
- DNN is relatively simpler, but less accurate (the loss is ~2x that of CNN)

$$loss = \|\hat{y} - y\|_{2} + \lambda \left\| \frac{1}{g} \int_{pt}^{pb} \frac{\partial h_{SP}}{\partial t} dp - \frac{1}{g} \int_{pt}^{pb} \frac{\partial h_{NN}}{\partial t} dp \right\|_{2}$$

NN prediction can be very accurate

Precipitation difference is <0.5 mm/day