Global Carbon Fluxes Induced by Management Practices on Agricultural Land

Xiaoming Xu, Atul K. Jain, Shijie Shu, Prateek Sharma

Department of Atmospheric Sciences, University of Illinois, Urbana, IL 61801

Acknowledgements DOE (No. DE-SC0016323)

Overall Objectives of Our E3SM Project

- Advance the treatment of land disturbance, particularly LULCCs and land management practices, within an IAM and couple it with E3SM to fully explore the potential contribution of
 - LULCC and land management practices to carbon emissions and mitigation opportunities
 - Terrestrial carbon sources and sinks, and climate change
- Tasks:
 - Improving the historical distribution of LULCC in E3SM.
 - Implementation of Global-Scale Spatial Dynamic Allocation Model (SDAM) of agricultural land use change in GCAM-E3SM coupled modeling framework
 - Modeling land management practices that influence carbon sinks in terrestrial agriculture and forest ecosystems and mitigate climate change

Representation of Land Management in Current Land Models

- Missing components of current land models:
 - Most land models have a very simple or no representation of land management practices
 - Carbon and nitrogen dynamics of the livestock feed-manure cycle have not been accounted for
- In this talk
 - Implement land management practices into a land surface model to estimate carbon fluxes
 - Estimate carbon fluxes from land management (farmland emissions, E_{farm}) and agricultural land use change (E_{luc})

Framework: agricultural land management

- Implementation of the livestock feed-manure cycle
 - Harvest process for crop grain
 - Crop residual treatment
 - Livestock grazing
 - Manure
- N fertilizer (Chemical)
- Tillage process
- Irrigation
- Burning

Livestock feed-manure cycle and its impact on C and N dynamics

1. Estimation of country scale feed demand (carbon) based on the feed requirement (*Krausmann et al, 2008*) for 16 major livestock $\sum Livestock head \times Feed demand per animal$

2. Quantification of the feed sources (cropland and grazing land)

Total livestock feed demand 2,450 Tg C/yr

Pasture feed (1,076 Tg C/yr) produced on grazing land

Feed and Manure C and N CH₄ N₂O Feed CO,, C Manure Ν N **Manure N** Manure N returned back to the Manure C soil is in both organic and Manure C in organic form is ٠ inorganic forms treated the same as litter Organic manure N is treated the ٠ same as litter

 Inorganic manure N is inputted into soil inorganic N pool

E³SM Energy Exascale Earth System Model

7

Products

Our analysis make a distinction between E_{luc} and E_{farm} carbon flux calculation

Net agriculture carbon $flux = E_{farm} + E_{luc}$

1) $E_{luc} = E_{p_1yr} + E_{p_10yr} + E_{p_100yr} + E_{p_100yr} + E_{soil}$

 E_{p_1yr} : emissions from 1-year product pool E_{p_10yr} : emissions from 10-year product pool E_{p_100yr} : emissions from 100-year product pool E_{p_1000yr} : emissions from 1000-year product pool

E_{soil}: emissions from soil disturbance caused by land use change

2) $E_{farm} = NEE + E_{h_cO2} + E_{t_cO2} + E_{w_cO2}$ $NEE = R_a + R_h - GPP$

NEE: Net Ecosystem Exchange **GPP:** Gross Primary Productivity R_a : Autotrophic Respiration R_h : Heterotrophic Respiration E_{h_CO2} : Carbon loss due to harvest of biomass E_{t_CO2} : Carbon loss due to soil tillage E_{w_CO2} : Carbon loss due to burning

Results (discuss based on 9 macro-geographical regions)

E_{luc} and E_{farm} on cropland and grazing land

E_{luc} (Tg C/yr)

Cropland

Grazing land

≥1 0.8 0.6 0.4

0.2

0.1

0.8 0.6 0.4

0.2

0.1

0

∂.8 0.6 0.4

0.2

0.1

0

E_{farm} (Tg C/yr)

Top three contributing crops

E_{luc} and **E**_{farm} for plant- and animal-based food at country scale

Plant-based food

Animal-based food

Summary

- Agricultural land is a net carbon source with the flux 2.26 Pg C/yr in 2010
- Emissions from farmland management activities contribute to 38% and land use change contribute 62% to total emissions
- South America and North America are the largest emitting regions
- Cropland and grazing land contribute 72% and 28% to total emission
- Maize, rice and wheat are the major contributing crops

Next

- Implement the land management practices, especially the C and N dynamics caused by feed-manure cycle in the ELM
- Implement mosaic structure in ELM to calculate the soil properties
- Perform ELM simulations for the future to compare the carbon, water and energy fluxes between ISAM and LUH2 LULCC datasets

Thank you!

