

Wildfire aerosol climate effect using online fire emission coupling in E3SM

Li Xu¹, Stijn Hantson¹, Yang Chen¹, William J. Riley², Qing Zhu², Natalie M. Mahowald³ and James T. Randerson¹

Virtual E3SM PI meeting, October 29, 2020

¹University of California, Irvine, ²Lawrence Berkeley National Laboratory, ³Cornell University.

BIOLOGICAL AND ENVIRONMENTAL RESEARCH Earth and Environmental Systems Sciences

Climate effect of wildfires

U.S. DEPARTMENT OF **ENERGY**

Fire aerosols significantly change near-surface climate and primary productivity in many regions

0

-3

-7

-20

-40

0 -0.5

-3

Surface air temperature (°C)

Energy Exascale Earth System Model

Gross Primary Productivity (gC m⁻² yr⁻¹)

Variables	Fire – No Fire
Downward solar radiation at land surface (W m ⁻²)	-2.8±0.7*
Land surface air temperature (°C)	-0.18±0.15*
Land relative humidity (%)	0.39±0.31*
Gross primary productivity (Pg C yr ⁻¹)	-3.0±1.7*

Xu et al., in prep.

3

Climate change's influence on wildfires

f 🎔 🖬

Colorado's record-breaking wildfires show "climate change is here and now"

BY JEFF BERARDELLI

NEWS

'Brutally hot': California Labor Day weekend brings heat, fire, virus fears

By John Antczak and John Rogers The Associated Press Published 2:36 p.m. PT Sep. 4, 2020 | Updated 2:41 p.m. PT Sep. 4, 2020

() y 🖌

 Does our Earth System model have capability to simulate this climate change's influence on fire behavior and activities?
How do wildfires respond to the changing climate

Fast-Moving California Wildfires Boosted by Climate Change

in a regional or global scale?

Energy Exascale Earth Svstem Model A VICIOUS FEEDBACK LOOP

Climate change fueled the Australia fires. Now those fires are fueling climate change.

By Maddie Stone on Jan 10, 2020

ENERGY

Objectives

- Couple online fire emissions from ELM to EAM that is not available in E3SM
- Provide a tool to study the fully-coupled fire-climate interaction in E3SM

y Exascale System Model

Fire Model in E3SM (adopted from CLM4)

Li et al., 2012, Biogeosciences

E3SM Energy Exascale Earth System Model

Coupled fire emission module in E3SM

EAM feature:

- Choice of surface or elevated vertical fire emission
- Timestep: 30 minutes

ELM features:

- PFT-dependent emission factor for each species and DM/C ratio
- Consideration of peat fire emission factor in the equatorial Asia

and a second			
	#	Plant Function Type	Emission Factor Source
	0	Not vegetated	0
Str. million	1	NET Temperate	S3
S1 SAVA	2	NET Boreal	S2
	3	NDT Boreal	S2
	4	BET Tropical	S4
	5	BET Temperate	S3
S2 BORF	6	BDT Tropical	S4
	7	BDT Temperate	S3
	8	BDT Boreal	S2
		BES Temperate	S3
S3 TEMP	> 10	BDS Temperate	S3
	11	BDS Boreal	S2
	12	C3 Arctic Grass	S2
	13	C3 non-Arctic Grass	S1
S4 DEFO	14	C4 Grass	S1
	15	Crop 1	S5
	16	Crop 2	S5
S5 AGRI		EQAS	Emission factor references: Andreae, 2019, ACI
			U.S. DEPARTMEN

PEAT

S6

Energy Exascale Earth System Model

E³S

U.S. DEPARTMENT OF

Experiment	Description
No fire	Non-fire aerosol sources
Cpl. fire	Non-fire aerosol sources + online fire emissions from ELM
GFED fire	Non-fire aerosol sources + prescribed monthly optimized fire emissions from GFED

Duration: 20 years (1997-2016)

Energy Exascale Earth System Model

Preliminary results

The atmospheric primary organic matter (POM) burden and aerosol optical depth from fires appears low bias in tropical fire regions and high bias in northern hemisphere forest regions in accordance with burned area.

Preliminary results:

Energy Exascale Earth System Model

Fire aerosols change near-surface climate in many regions

Ongoing: Developing a new semi-mechanic fire model

Fire Ignition Fire Spread Fire Suppression Fire line/front Man-made fires Cattle density (FAO) ٠ • Fragmentation index **Population Density** Fire size • - fire duration -Road density: - GDP (Global Fire Atlas) gROADSv1 Natural fires -Cropland cover: LUH2 Lightening -**Burned Area**

Development of a Machine Learning Fire Model in E3SM

Ongoing: Integration of the fire-climate coupling in E3SM

Summary

- We developed an online fire emission coupling module in E3SM.
- The atmospheric aerosol loading from the coupled fires appears reasonable with a low bias in tropical fire regions.
- The new feature of the online fire emission coupling provides a useful tool to study the fire-climate interaction in the near future.

Thanks!

