Using neural networks to predict atmospheric optical properties for radiative transfer computations

Menno Veerman¹, Robert Pincus^{2,3}, Chiel van Heerwaarden¹

¹Meteorology and Air Quality group, Wageningen University and Research, ²University of Colorado, ³NOAA Physical Sciences Laboratory, Boulder, US

Veerman et al., Prediction atmospheric optical properties for radiative transfer computations using neural networks. *Phil Trans. R. Soc. A . (accepted),* doi.org/10.1098/rsta.2020.009

A constant need for rapid radiative transfer

- Radiative transfer is computationally very expensive
- First step: spectral integration with correlated k-method (e.g. Fu & Liou, 1992)
 ~10⁶ → ~10² spectral integration points
- Further approximations in weather and climate models:
 - Coarsening the horizontal grid in radiation computations (Morcrette, 2000)
 - Temporal sampling: infrequent radiation calls (Morcrette, 2000)
 - Spectral sampling (Pincus & Stevens, 2009)

A constant need for rapid radiative transfer

- Radiative transfer is computationally very expensive
- First step: spectral integration with correlated *k*-method (e.g. Fu & Liou, 1992)
 - \succ ~10⁶ → ~10² spectral integration points
- Further approximations in weather and climate models:
 - Coarsening the horizontal grid in radiation computations (Morcrette, 2000)
 - Temporal sampling: infrequent radiation calls (Morcrette, 2000)
 - Spectral sampling (Pincus & Stevens, 2009)
- Alternative approach: machine learning
 - > Emulating/replacing a full radiative transfer parametrization (e.g. Chevallier et al., 1998; Krasnopolsky et al., 2005)
 - > Emulating part of a radiative transfer parametrization

Optical properties & radiative transfer

- au Optical depth
- ω_0 Single scattering albedo
- *g* Asymmetry parameter
- *B* Planck source function

Optical properties & radiative transfer

- au Optical depth
- ω_0 Single scattering albedo
- *g* Asymmetry parameter
- *B* Planck source function

Only gaseous optical properties!

Neural network emulator

- 2 neural networks per optical property (upper/lower atmosphere)
 - \blacktriangleright Shortwave (solar): au_{sw} , ω_0
 - > Longwave (thermal): τ_{lw} , B
- Training against RRTMGP (Pincus et al., 2019) \rightarrow same input/output
 - Input: pressure, temperature, water vapour, (ozone)
 (per grid cell)
 - Output: 224/256 optical properties (spectral integration)

(per grid cell)

Neural network emulator

• 2 neural networks per optical property (upper/lower atmosphere)

- \blacktriangleright Shortwave (solar): au_{sw} , ω_0
- > Longwave (thermal): τ_{lw} , B
- Training against RRTMGP (Pincus et al., 2019) \rightarrow same input/output
 - Input: pressure, temperature, water vapour, (ozone)
 (per grid cell)

(per grid cell)

- Output: 224/256 optical properties (spectral integration)
- Optimising the speed-accuracy trade-off:
 - > Multiple neural network architectures
 - LES-specific training

Neural network set-up

- Multilayer perceptons
 - ➤ 1 layer of 32 neurons
 - ➤ 1 layer of 64 neurons
 - 2 layers of 32 neurons
 - > 2 layers of 64 neurons
 - > 3 layers of 32, 64 and 128 neurons, respectively
- Activation function: Leaky ReLU ($\alpha = 0.2$)
- Optimizer: Adam
- Loss: Mean Squared Error (MSE)
- <u>Training/testing data</u>: random perturbations of the 100 atmospheric profiles from RFMIP (Pincus et al, 2016), with a random 5% reserved for testing.

Validation: from optical properties to fluxes

Prediction accuracy comes at a cost

LES tuning allows smaller networks

2-3 times faster

Conclusions

- Neural networks can predict optical properties with high accuracy
 - > Resulting surface irradiance errors are largely within 1.0 W m⁻² (<1%)
- Neural network-based parametrisation is up to 4 faster than RRTMGP
- LES-specific tuning shows great potential

References

- Morcrette, J. 2000: On the effects of temporal and spatial sampling of radiation fields on the ECMWF forecasts and analyses. *Monthly Weather Review*, 128, 876–887.
- Chevallier F, Chéruy F, Scott NA, Chédin A. 1998 A neural network approach for a fast and accurate computation of a longwave radiative budget. *Journal of Applied Meteorology*, 37, 1385–1397.
- Krasnopolsky VM, Fox-Rabinovitz MS, Chalikov DV. 2005 New approach to calculation of atmospheric model physics: Accurate and fast neural network emulation of longwave radiation in a climate model. *Monthly Weather Review*, 133, 1370–1383.
- Pincus R, Forster PM, Stevens B. 2016 The radiative forcing model intercomparison project (rfmip): Experimental protocol for cmip6. *Geoscientific Model Development*, 9.
- Pincus R, Mlawer EJ, Delamere JS. 2019 Balancing accuracy, efficiency, and flexibility inradiation calculations for dynamical models. *Journal of Advances in Modeling Earth Systems*, 11, 3074–3089.
- Fu Q, Liou KN. 1992 On the correlated k-distribution method for radiative transfer innonhomogeneous atmospheres. *Journal of the Atmospheric Sciences*, 49, 2139–2156'
- Pincus R, Stevens B. 2009 Monte carlo spectral integration: a consistent approximation forradiative transfer in large eddy simulations. *Journal of Advances in Modeling Earth Systems*, 1