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A constant need for rapid radiative transfer

• Radiative transfer is computationally very expensive

• First step: spectral integration with correlated k-method (e.g. Fu & Liou, 1992)

➢ ~106 → ~102 spectral integration points

• Further approximations in weather and climate models:

➢ Coarsening the horizontal grid in radiation computations (Morcrette, 2000)

➢ Temporal sampling: infrequent radiation calls (Morcrette, 2000)

➢ Spectral sampling (Pincus & Stevens, 2009)
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• Alternative approach: machine learning

➢ Emulating/replacing a full radiative transfer parametrization (e.g. Chevallier et al., 1998; Krasnopolsky et al.,  2005)

➢ Emulating part of a radiative transfer parametrization
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Optical properties & radiative transfer
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Atmospheric input Optical properties Radiative fluxes

𝜏 Optical depth

𝜔0 Single scattering albedo
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𝐵 Planck source function
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Optical properties & radiative transfer
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Only gaseous optical properties!
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Neural network emulator

• 2 neural networks per optical property (upper/lower atmosphere)
➢ Shortwave (solar):     𝜏𝑠𝑤 , 𝜔0

➢ Longwave (thermal): 𝜏𝑙𝑤 , 𝐵

• Training against RRTMGP (Pincus et al., 2019) → same input/output
➢ Input: pressure, temperature, water vapour, (ozone)                              (per grid cell)

➢ Output: 224/256 optical properties (spectral integration)                      (per grid cell)
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• Optimising the speed-accuracy trade-off:
➢ Multiple neural network architectures

➢ LES-specific training
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Neural network set-up

• Multilayer perceptons
➢ 1 layer of 32 neurons
➢ 1 layer of 64 neurons
➢ 2 layers of 32 neurons
➢ 2 layers of 64 neurons
➢ 3 layers of 32, 64 and 128 neurons, respectively

• Activation function: Leaky ReLU (𝛼 = 0.2)

• Optimizer: Adam

• Loss: Mean Squared Error (MSE) 

• Training/testing data: random perturbations of the 100 atmospheric profiles from RFMIP (Pincus 
et al, 2016), with a random 5% reserved for testing. 
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Validation: from optical properties to fluxes

99

Network sizes:

Neural Network − RRTMGP
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Prediction accuracy comes at a cost

Longwave radiation
Shortwave radiation
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LES tuning allows smaller networks

2-3 times 
faster



Conclusions

• Neural networks can predict optical properties with high accuracy
➢ Resulting surface irradiance errors are largely within 1.0 W m-2 (<1%)

• Neural network-based parametrisation is up to 4 faster than RRTMGP

• LES-specific tuning shows great potential
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