Discrete Element Model for Sea Ice 2020 ESMD-E3SM PI Meeting

The DEMSI Team

LANL, SNL

28th October 2020

• Los Alamos National Laboratory

- Adrian Turner (BER PI)
- Andrew Roberts
- Steven Brus

• Sandia National Laboratories

- Kara Peterson (ASCR PI)
- Dan Bolintineanu
- Svetoslav Nikolov
- Joel Clemmer

Discrete Element Model for Sea Ice (DEMSI)

- Develop a discrete element method sea ice model as new component of E3SM
- Particle method with discrete elements representing regions of sea-ice
 - Explicitly calculate forces between elements
 - Integrate equation of motion for each element
- Collaboration between LANL (BER) and SNL (ASCR)
 - Phase 1: Developing basic model (just finished)
 - Phase 2: Coupling into E3SM

• Performance:

- MPAS-Seaice is already run at the limit of strong scaling in E3SM
- LANL projects to port MPAS-Seaice to GPUs were not hugely successful
- Two essential performance limitations for current DOE sea-ice models:
- Particle methods have been shown to run effectively on GPUs
- Dynamics fidelity:
 - Current E3SM sea-ice model uses a viscous-plastic-elastic material
 - Assumes grid cells are large enough that there is an isotropic distribution in each of linear openings ("leads") in the ice pack ${\sim}100 \rm km$
 - Some observations suggest viscous-plastic models perform poorly for resolutions $< \sim \! 10 \text{km}$
 - A discrete element method allows explicit and complex force law capture anisotropic, heterogeneous and intermittent nature of sea ice deformation

Project Overview

• DEMSI:

- Circular elements for computational efficiency
- Each element represents a region of sea ice, and has its own ice thickness distribution (initial resolution > floe size)
- **Dynamics**: Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
 - Particle based molecular dynamics code
 - Built in support for DEM methods including history dependent contact models
 - Computationally efficient with massive parallelization
- Thermodynamics: CICE consortium Icepack library
 - State-of-the-art sea-ice thermodynamics package
 - Vertical thermodynamics, salinity, shortwave radiation, snow, melt ponds, ice thickness distribution, BGC

28th October 2020 5 / 15

• Computational performance

- How to make the model fast enough for global climate applications?
- Contact model
 - How should elements interact to represent sea ice physics?
- Coupling
 - How to couple particles to Eulerian mesh conservatively?
- Ridging
 - Convergence of sea ice converts area to thickness how to manage element distortion?

Companion talk

- Kara Peterson will present more details on the ASCR side of project
 - GMLS particle to grid interpolation for ocean/atmosphere coupling
 - GMLS Particle to particle remapping
 - Performance Kokkos performance on GPUs
 - Contact model calibration and validation
- Infrastructure + NGD Software and Algorithms Session Tomorrow, Thursday 29th October 2020, 11:10am

- Initial implementation based on Mark Hopkins model modified for circular elements
- Elements can be bonded (frozen) or unbonded (fracture)

Bonded elements

- Linear bonds between elements with viscous-elastic "glue" at each point
- Mohr-Coulomb fracture law

Unbonded elements

- No strength in tension, Compression represents ridge formation
- Normal friction force term

Contact model

- Numerous test cases developed to validate the various aspects of the model
- Mechanical tests to better validate the contact model presented *tomorrow*
- Future work will use machine learning to develop better contact model
 - Observations
 - High resolution process simulations

Ridging

- Convergence of sea ice generates pressure ridges - conversion of ice area into thickness
- Developed a ridging methodology for a discrete element model
 - Above threshold elastic behaviour gives way to normal friction (plastic deformation) between elements
 - Based on simulations of individual ridge by Hopkins
 - Calculated convergence moves ice from thin thickness categories to thicker ones

Remapping

- Ridging causes shrinking of elements element size controls allowable time step
- Need to ameliorate this effect.
- Implemented global remapping of distorted particle distribution back to a "good" initial distribution
 - Simple geometric overlap Higher order to reduce numerical diffusion
 - Advanced GMLS method Tomorrow

The DEMSI Team (LANL, SNL)

Discrete Element Model for Sea Ice

- CICE consortium Icepack column physics library fully integrated
- BFB for column test case
- Some complexity for coupling between C++ and Fortran

Basin scale simulations

- All of above combined into Arctic basin simulations
- Broadly similar physics level to MPAS-Seaice - no fracturing yet
- Preliminary results promising
- Need to carefully assess dynamics
- CompyMcNodeFace proving vital for this work

- Project repository built around ease of use and collaboration
- Contains more than source code:
 - Test cases
 - Source code
 - CMake build system
 - CTest testing system unit/test case regression
 - Documentation (Sphinx/doxygen)
 - Analysis code
 - Visualization
 - Data download scripts

😧 bash o jung to 🛛	Full requests issues. Markeplace	Datos		¢ +- ⊕-
O Cede C mark & Th Put ing	en () 🔿 allon 🖂 Prijeck ()) () Whi () Insuity	(⊵ mijni	wen - * gfor t yfek *
Preserve Pillmenh Schupp Gottile 25. Marrier Henrickand Jaharen Henrick		Gowlin Adding	t Cole +	About DEMSI soldec preject repo. for a carbitic based sea or model
in over	Minar modifications. Added lost?ack submodule		21 days ago 3 years ago	 Peakse Veniceme
Es Leonies () estats Es analysis Es ent	sphere to pair_grav_books_bittey.h doyon Merge boards bitteresthall_bag into rate Sphere the configure scripts	nd contact disclaration) Inn	20 days ago 4 days ago 3 years ago	References No-vectori publiched Chech & nov-vectore
 danticada des permon () attache 	Implement glamperson to so count General Improvements to test ones Replaced OSQP with Permon		3 yean ago lesi manth 5 months ago	Packages
13 рек. () +477013 18 рт 18 полани	Added petits and permit libraries integrated lime manager object integrated lime manager object		2 hours ago 2 hours ago 2 hours ago	Contribution ()
B syvel () Levis () B veb D gigmes	Maned largend) and submakin Add space and time overaging Maned Sirgeniz into submakin		yeslesligy 25 hours app yesterdity	Languages
D generates D consistence D LEDOROR	Manel layenQ inis submobile Manel layenQ inis submobile Vocabel layenQ init submobile		yrsinsiy ystardy 4 morths aso	Con NUM Porteen 100M Porteen 72M Other 27M Porteen 72M Other 27M Port 22M Sould 22M
D READARE IN	READINE IN		4 months ago	
Contraction and a second second second				and index

Future work includes:

- Improved contact model using machine learning
- Further improvements to performance in both LAMMPS (kokkos) and DEMSI
- Enhanced coupling improved preservation physical bounds
- Coupling DEMSI into E3SM
- Coupled simulations
- Improved metrics for model assessment