Updates on the interactive chemistry and aerosols for E3SM

Chemistry team: Qi Tang, Philip J. Cameron-Smith (LLNL) Michael J. Prather, Juno Hsu (UCI)

Aerosol team:

Hailong Wang, Mingxuan Wu, Manish Shrivastava, Sijia Lou (PNNL) Xiaohong Liu, Ziming Ke, Zheng Lu (TAMU) Yang Feng (ANL)

> ESMD/E3SM Annual All-Hands Meeting October 26-29, 2020

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL-PRES-816003

Overview

- Interactive chemistry developments
 - Troposphere and stratosphere
 - Radiation (Fast-JX, inline photolysis rates)
- Aerosol developments and coupling with chemistry
 - Representation of nitrate using MOSAIC-MAM4
 - Prognostic stratospheric sulfate for volcanic eruption (MAM7S)
 - More explicit treatment of the formation and sink of SOA
 - New dust emission scheme and optical properties
 - Currently coupled with (modified) MOZART chemistry

Interactive chemistry: Goals and current status

- Goals
- Establish an interactive strat+trop gas-phase chemistry for E3SM v3/4
- Support aerosol chemistry and BGC including short-lived climate forcers

(https://earth.esa.int/image/image_gallery?img_id=391652)

Current Status

- The O3v2 paper under review in GMD
- The 3rd Solar-J paper under review in JAMES
- Rewrote UCI tropospheric chemistry mechanism and implemented it in E3SM
- Updated to Linoz v3 for the stratospheric chemistry
- Completed first decadal long test run with the UCI chemistry. Initial results look reasonable. Ready to couple with other NGD tasks.
- Implemented Fast-J in E3SM and coupled it with other components.

Updated to O3v2 in the stratosphere for E3SMv2

- E3SMv1 chemistry (O3v1) is incompatible with any interactive chemistry.
- Updated to O3v2 to be compatible with chemUCI and improved the simulated O3.

Tang et al.,

GMDD 2020

also see poster

Taylor diagram for zonal mean stratospheric column ozone (SCO) comparing O3v2, previous O3v1, and UCI CTM. O3v2 shows improvements over O3v1.

First chemUCI (full chemistry) results are encouraging

- Annual mean geographic patterns of the total column ozone are somewhat reasonable, but we need to reduce the low biases.
- Signals are mainly from the stratospheric Linoz.

First chemUCI results are encouraging vs aircraft obs

- Initial 15-year test results are reasonable compared to observations.
- Code on git branch (tangq/atm/UCI-chem), ready to be coupled with aerosols and BGC.

2-7 km E3SM vs Aircraft

(historical missions)

First-order spatio-temporal variability is acceptable for key tracers in this first quicklook at the details of the chemistry.

Fast-J implemented and coupled to photochemistry

January 2 00:00Z, Instantaneous

UV driven, absorbed primarily by stratospheric O_3 , hence largest when sun is overhead.

	 			•
	 		 0011/0	`

Removes lookup table biases in E3SM (Superfast chemistry)

Fast-J is a huge improvement over lookup table.

- Consistent treatment with options for overlapping clouds
- Aerosol absorption and scattering
- Spherical geometry of atmosphere (Prather & Hsu, 2019)
- Multi-angle scattering:
 - Enhanced photolysis above clouds and in top of clouds.
 - Realistic diffuse PAR incident on ocean and biosphere
- Updated and updatable laboratory data tables
- Supported for global community by UC Irvine

See Cameron-Smith et al. poster

Solar-J development completed with JAMES paper

Assessing Uncertainties and Approximations in Solar Heating of the Climate System Juno Hsu & Michael Prather (UC Irvine), revised 08/2020

Evaluates a wide range of well-known errors & uncertainties in solar heating codes used for climate simulations *within a single, realistic climate framework* with 25 variants of Solar-J

Class 1 errors (1-3 W m⁻², clearly fixable but some w/cost)

- Spherical, refracting atmosphere instead of flat.
- Resolve cloud spectral absorption instead of RTM broad bands.
- Multi-stream scattering instead of 2-stream (no δ -scaling).
- Ocean surface albedo resolved by zenith angle.
- Monte Carlo noise in atmospheric heating rates.

While clear uncertainties with similar error levels remain (3D effects), it seems prudent to push ahead on these Class 1 errors for short-term climate simulations

Representation of nitrate and its impact in E3SMv1

Nitrate burden (μ g m⁻²) simulated in E3SMv1 (without and with Aitken mode dust) and in CESM2

Change in cloud radiative forcing (W m⁻²) due to nitrate aerosol for E3SM and CESM2

- MOSAIC has been implemented in E3SMv1 and coupled with MOZART chemistry and a modified MAM4 (e.g., NO3, NH4, Ca, CO3, Na, Cl, and Aitken-mode dust)
- E3SMv1 produces less nitrate than CESM2, especially over ocean, and even less when Aitken-mode dust is treated as part of the MOSAIC and MAM4 coupling
- The magnitude of change in cloud radiative forcing by nitrate is significantly reduced when Aitkenmode dust is treated, becoming comparable to that in CESM2

See Wu et al. poster (PS2-Atmosphere)

Strong production and sinks govern atmospheric SOA distributions and radiative forcing

- A detailed treatment of SOA precursor gas chemistry including multigenerational aging via fragmentation and functionalization reactions, particle-phase oligomerization, and particle-phase loss by photolysis
- Including photolysis improves simulated SOA vertical profiles significantly compared to ATom aircraft measurements
- Different SOA chemistry treatments cause a factor of 3 in SOA lifetime; PD-PI RFari (SOA) decreases from -0.42 to -0.08
 W m⁻² when photolysis is included as a sink of SOA

Lou, Shrivastava et al. (Submitted, JAMES)

New dust emission scheme to account for time-varying soil properties and high-latitude sources

- Zender scheme produces nearly zero emission beyond 60N, while the Kok scheme predicts 2% of the global dust emission from 60-90N with a seasonal cycle, leading to an increase in surface concentrations; Arctic dust can be an important source for cloud nucleation and iron
- Dust surface concentrations agree better with the long-term surface observations at NSA (Barrow, Alaska)

Evaluation of E3SMv1-MAM7S against observations for the major volcanic eruptions during 1991-1993

Name	Aerosol Module	Chemistry
M4-MC	MAM4	MOZART
M4-MCI	MAM4	Improved MOZART
M7S-MCI	MAM7S	Improved MOZART
M7S-LNZ	MAM7S	Linoz
WACCM6	MAM4	WACCM6

- Stratospheric sulfate burden simulated by MAM7S agrees well with observations and WACCM6 results
- Sulfate formation in MAM7S responds more rapidly to the Pinatubo eruption due to an improved HO2-OH chemistry in MOZART
- MAM7S maintains the stratospheric sulfate burden better than MAM4 in E3SM but worse than Linoz with prescribed OH
- Impact on stratospheric AOD, ozone and radiation will be assessed

See Ke et al. poster (PS2-Atmosphere)

Future work for coupling aerosols with chemUCI and integration with other new developments for v3/v4

- Complete the development and evaluation of the individual pieces
- Integrate the different new aerosol developments
 - Dynamic solver of gas-particle partitioning to use MOSAIC for SOA
 - Changes to MAM4 (MAM7S) and emissions
- Coupling of the MOSAIC and MAM7S with chemUCI will require additional chemical species and reactions
- Evaluate dust iron dissolution model in the coupled BGC modeling framework
- Integrate and evaluate the new treatments in v3/v4