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Overview

• Interactive chemistry developments
• Troposphere and stratosphere
• Radiation (Fast-JX, inline photolysis rates)

• Aerosol developments and coupling with chemistry
• Representation of nitrate using MOSAIC-MAM4
• Prognostic stratospheric sulfate for volcanic eruption (MAM7S)
• More explicit treatment of the formation and sink of SOA
• New dust emission scheme and optical properties
• Currently coupled with (modified) MOZART chemistry



Interactive chemistry: Goals and current status

(https://earth.esa.int/image/image_gallery?img_id=391652)

Goals

Current Status

• Establish an interactive strat+trop gas-phase chemistry for E3SM v3/4
• Support aerosol chemistry and BGC including short-lived climate forcers

• The O3v2 paper under review in GMD
• The 3rd Solar-J paper under review in JAMES
• Rewrote UCI tropospheric chemistry mechanism and 

implemented it in E3SM
• Updated to Linoz v3 for the stratospheric chemistry
• Completed first decadal long test run with the UCI 

chemistry. Initial results look reasonable. Ready to 
couple with other NGD tasks.

• Implemented Fast-J in E3SM and coupled it with other 
components.



Updated to O3v2 in the stratosphere for E3SMv2
• E3SMv1 chemistry (O3v1) is incompatible with any interactive chemistry.
• Updated to O3v2 to be compatible with chemUCI and improved the simulated O3.

Tang et al.,
GMDD 2020
also see poster
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First chemUCI (full chemistry) results are encouraging

OMI/MLS satellite E3SMTotal column ozone, Annual mean

• Annual mean geographic patterns of the total column ozone are somewhat reasonable, 
but we need to reduce the low biases.

• Signals are mainly from the stratospheric Linoz.



First chemUCI results are encouraging vs aircraft obs
• Initial 15-year test results are reasonable compared to observations.
• Code on git branch (tangq/atm/UCI-chem), ready to be coupled with aerosols and BGC.
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First-order spatio-temporal 
variability is acceptable for key 
tracers in this first quicklook at the 
details of the chemistry.



Fast-J implemented and coupled to photochemistry

• Removes lookup table biases in E3SM (Superfast 
chemistry)

• Consistent treatment with options for overlapping 
clouds

• Aerosol absorption and scattering
• Spherical geometry of atmosphere (Prather & Hsu, 2019)

• Multi-angle scattering:
– Enhanced photolysis above clouds and in top of clouds.
– Realistic diffuse PAR incident on ocean and biosphere

• Updated and updatable laboratory data tables
• Supported for global community by UC Irvine

January 2 00:00Z, Instantaneous

Shielding 
by clouds

Enhanced 
photolysis by light 
reflecting off ice

jNO2

UV driven, absorbed primarily by 
stratospheric O3, hence largest when 
sun is overhead.

jO1D

Fast-J is a huge improvement over lookup table.

See Cameron-Smith et al. poster



Solar-J development completed with JAMES paper
Assessing Uncertainties and Approximations in Solar Heating of the Climate System
Juno Hsu & Michael Prather (UC Irvine), revised 08/2020 

Class 1 errors (1-3 W m-2, clearly fixable but some w/cost)
• Spherical, refracting atmosphere instead of flat.
• Resolve cloud spectral absorption instead of RTM broad bands.
• Multi-stream scattering instead of 2-stream (no δ-scaling).
• Ocean surface albedo resolved by zenith angle.
• Monte Carlo noise in atmospheric heating rates.

While clear uncertainties with similar error levels remain (3D effects), it seems 
prudent to push ahead on these Class 1 errors for short-term climate simulations

Evaluates a wide range of well-known errors & uncertainties in solar heating codes used for 
climate simulations within a single, realistic climate framework with 25 variants of Solar-J

ocean albedo errors



Representation of nitrate and its impact in E3SMv1

Change in cloud radiative forcing (W m-2) due to nitrate aerosol for E3SM and CESM2  

Nitrate burden (𝜇g m-2) simulated in E3SMv1 (without and with Aitken mode dust)  and in CESM2

• MOSAIC has been implemented in 
E3SMv1 and coupled with MOZART 
chemistry and a modified MAM4 
(e.g., NO3, NH4, Ca, CO3, Na, Cl, 
and Aitken-mode dust)

• E3SMv1 produces less nitrate than 
CESM2, especially over ocean, and 
even less when Aitken-mode dust is 
treated as part of the MOSAIC and 
MAM4 coupling

• The magnitude of change in cloud 
radiative forcing by nitrate is 
significantly reduced when Aitken-
mode dust is treated, becoming 
comparable to that in CESM2

See Wu et al. poster (PS2-Atmosphere)



Strong production and sinks govern atmospheric SOA 
distributions and radiative forcing

Photolysis ON
Photolysis OFF

• A detailed treatment of SOA precursor gas chemistry including multigenerational aging via fragmentation and 
functionalization reactions, particle-phase oligomerization, and particle-phase loss by photolysis

• Including photolysis improves simulated SOA vertical profiles significantly compared to ATom aircraft measurements

• Different SOA chemistry treatments cause a factor of 3 in SOA lifetime; PD-PI RFari (SOA) decreases from -0.42 to -0.08 
W m-2 when photolysis is included as a sink of SOA

Lou, Shrivastava et al. (Submitted, JAMES)



New dust emission scheme to account for time-varying soil 
properties and high-latitude sources

See Feng et al. poster (PS1-WC)

Zender
scheme 
(E3SMv1)

Kok
scheme

Dust Emission Surface Concentration

• Zender scheme produces nearly zero emission beyond 60N, 
while the Kok scheme predicts 2% of the global dust emission 
from 60-90N with a seasonal cycle, leading to an increase in 
surface concentrations; Arctic dust can be an important source 
for cloud nucleation and iron

• Dust surface concentrations agree better with the long-term 
surface observations at NSA (Barrow, Alaska)



Evaluation of E3SMv1-MAM7S against observations for the 
major volcanic eruptions during 1991-1993

• Stratospheric sulfate burden simulated by MAM7S 
agrees well with observations and WACCM6 results 

• Sulfate formation in MAM7S responds more rapidly 
to the Pinatubo eruption due to an improved HO2-OH 
chemistry in MOZART

• MAM7S maintains the stratospheric sulfate burden 
better than MAM4 in E3SM but worse than Linoz with 
prescribed OH

• Impact on stratospheric AOD, ozone and radiation 
will be assessed

Name Aerosol Module Chemistry

M4-MC MAM4 MOZART
M4-MCI MAM4 Improved MOZART

M7S-MCI MAM7S Improved MOZART
M7S-LNZ MAM7S Linoz
WACCM6 MAM4 WACCM6

See Ke et al. poster (PS2-Atmosphere)

Pinatubo



Future work for coupling aerosols with chemUCI and 
integration with other new developments for v3/v4

SOA

Stratospheric
Sulfate

Nitrate
(MOSAIC)

Dust

• Complete the development and evaluation 
of the individual pieces

• Integrate the different new aerosol 
developments
– Dynamic solver of gas-particle partitioning to 

use MOSAIC for SOA
– Changes to MAM4 (MAM7S) and emissions

• Coupling of the MOSAIC and MAM7S with 
chemUCI will require additional chemical 
species and reactions

• Evaluate dust iron dissolution model in the 
coupled BGC modeling framework 

• Integrate and evaluate the new treatments 
in v3/v4 

Chemistry


