

Next-Generation Developments in Software and Algorithms Oct 26, 2020

Andy Salinger (Sub-Project Lead) Hyun Kang Andrew Bradley, Andrew Steyer, Cassidy Krause Karen Devine, Iulian Grindeanu, Vijay Mahadevan Salil Mahajan, Michael Kelleher, Rong-You Chien, Josh Fu Benj Wagman, Kenny Chowdhury

How the NGD Software and Algorithms sub-project Fits in the Larger E3SM Ecosystem

Software and Algorithms NGD

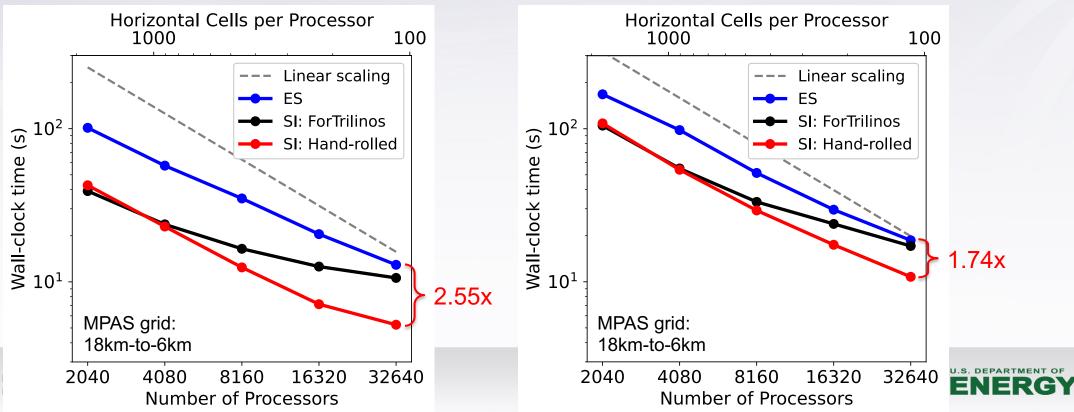
Major Themes: Make targeted investments to:

- Improve model throughput on exascale machines

 Algorithms, Performance
- 2. Improve developer productivity
- 3. Create a culture of Verification
- 4. Leverage DOE Computational Science investments
- 5. Entrain talented computational scientists into E3SM

NGD S&A Highlights October 2020

For more details, look for the presentation or poster from these authors.


Key Team Member

MPAS Barotropic Mode Solver

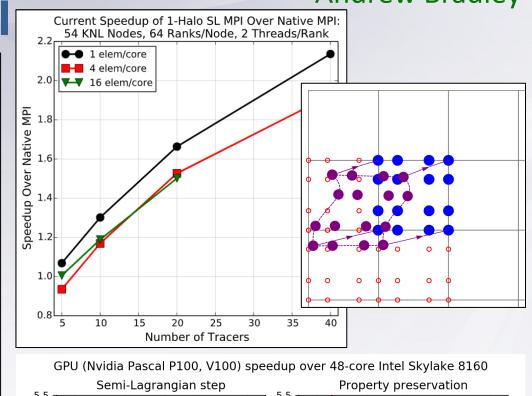
• Ocean barotropic mode

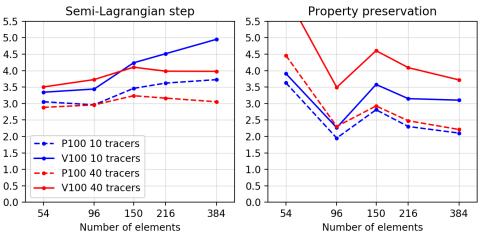
- a. Further improvements in the semi-implicit (SI) barotropic mode solver
 - a. 2.55x speedup for barotropic mode solve over explicit subcycling (ES)
 - b. 1.74x speedup of MPAS-O at scale

b. A new semi-implicit solver using ForTrilinos (Fortran interface to Trilinos): AMG preconditioner and CG solver

Barotropic mode solver only

% The explicit-subcycling scheme is also improved significantly in MPAS-O v7.0 compared to v6.0.

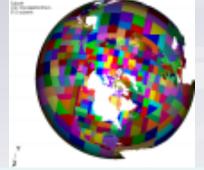

Total runtime

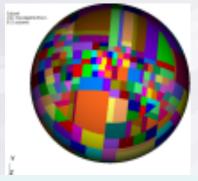

Hyun Kang

Andrew Bradley

SL Tracer Transport Upwind MPI

- Semi-Lagrangian tracer transport speeds up v2 atmosphere dycore by 2-3x.
- 2. Crucial speedup: communicate only what is needed.
 - a. Request red-owning processes to evaluate the purple points. These then update the blue points.
 - b. 2x speedup over full halo for 40 tracers.
 - c. Enables 2-halo reach with nearly 0 extra cost.
 - d. Very unstructured => nontrivial GPU implementation.
- Side Project: Developed new physics column neighborhood capability
 - Supports NGD Atm Physics scale-aware deep convection parameterization work of Guang Zhang.


New "coupled" partitioning strategy decreases time for parallel mesh intersection workflow

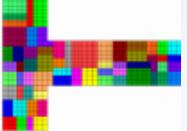

Fast computation of component-mesh intersections and projection weights for solution transfer for high-fidelity cases

mbtempest = MOAB + TempestRemap

Extensions to on-line intersection / projection underway

NE256-PG2: OCN (3.7M) -> ATM (1.57M); 1024 cores (bebop KNL)		
Strategy	Coverage time (s)	Intersection time (s)
RCB OCN + RCB ATM	1.81	20.49
RCB OCN + Inferred ATM	0.66	7.72
Gnomonic RCB OCN + Inferred ATM	0.43	3.08

Karen Devine,


Iulain Grindeanu

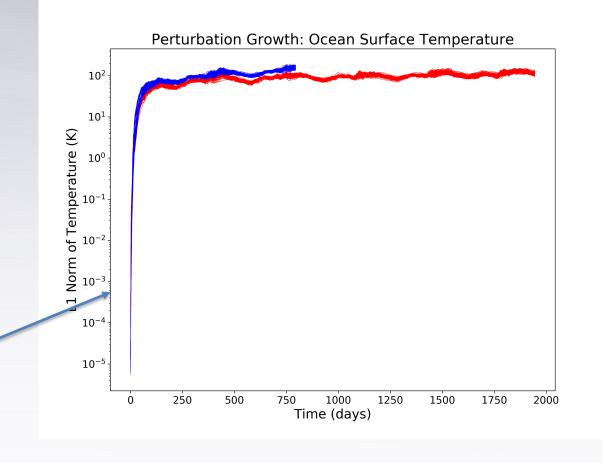
Vijay Mahadevar

Ocean partitioned via Zoltan's RCB (recursive coordinate bisection)

Atmosphere partition inferred from ocean's RCB partitioning tree

2D Gnomonic projection prevents artifacts from partitioning 3D spherical shell

POCs: I. Grindeanu, V. Mahadevan, ANL; K. Devine, SNL, SciDAC FASTMath Institute

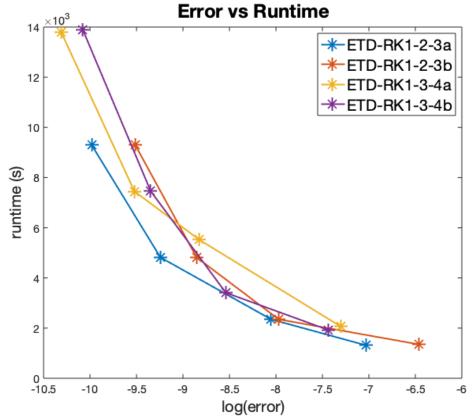

Multivariate Tests for Climate Reproducibility

- 1. Developed a ML based multivariate testing framework for climate reproducibility for MPAS-O using short ensembles:
 - a. To be ported to EVV the reproducibility testing framework for EAM.

SST Difference for GM Kappa changing from 1800 to 600, shown:

Ensemble testing framework can detect change from 1800 to 1799.

Salil Mahajan, Michael Kelleher

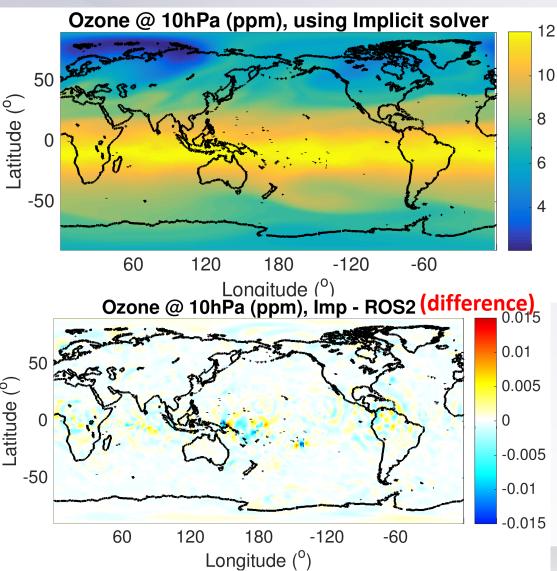


Exponential Time-Differencing Runge-Kutta Methods for Nonhydrostatic Atmosphere

Cassidy Krause, Andrew Steyer

- Developed new framework for deriving ETD-RK methods for nonhydrostatic models.
- Newly derived ETD-RK methods can take large and accurate time-steps.
- Utilizes time-convergence testing capability in HOMME-NH to evaluate quality of new methods.
- Current aim: Push the ETD-RK methods to be more efficient than current state-of-the-art IMEX-RK methods, by minimizing number of required solves and linear algebra operations
 - To decrease time-stepping cost of the E3SM atmosphere model.

Efficiency of several new custom ETD-RK methods implemented in HOMME-NH.


Krause, C. and Steyer, A. Exponential Rosenbrock integrators for nonhydrostatic atmosphere models. In preparation (2020)

Atmospheric Chemistry Solver

- 1. Using linearization of the second order Rosenbrock (ROS2) to replace the iterative implicit solver in current E3SM
- 2. 33% of improvement to the UCI chemistry in the Box model using ROS2 on Single CPU
- 3. 20% of improvement using E3SM v1 in Cori 21 nodes
 - a. 0.2 SYPD \rightarrow 0.25 SYPD using ROS2 solver
 - b. Difference between two solvers are reasonable. Ozone figures (right panels) show the fidelity of the Model outputs
 - atitude (^o) c. The ROS2 in E3SM_v2 is under construction, with a longer time period experiment (waiting for Cori)

Ron-You Chien,

Josh Fu

New "Optimization/UQ-based Calibration" Epic

- 1. Idea was discussed at Nov 2019 at All-Hands Meeting
- 2. Staffed for FY21!
 - Benj Wagman (Ran E3SM for postdoc application)
 - Kenny Chowdhury (Opt/UQ/ML expert)
- 3. Will be soliciting expert involvement with Deep Dives

