

A Roberts E. Coon², A. Garanaik¹, N. Jeffery¹, M. Maltrud¹, L. Van Roekel¹, J. Rowland¹, K. Smith¹, T. Zhou³ LLos Alamos National Laboratory 2.Oak Ridge National Laboratory 3.Pacific Northwest National Laboratory DOE ESMD-E3SM PI Meeting, October 26-29, 2020

InteRFACE

Interdisciplinary Research for Arctic Coastal Environments

- 1. The purpose of model development in InteRFACE
- 2. The E3SM Configuration in InteRFACE: Shipping and Oceanography
- 3. Improvements to Oceanic Mixing and Stratification
- 4. Benthic Biogeochemistry
- 5. Permafrost Hydrology and Runoff
- 6. Collaboration with Waves NGD, CICE Consortium and ICoM
- 7. Project Integration and Timeline

The purpose of model development in InteRFACE

Above: Sea ice drift from 30-years of E3SM-HR (Caldwell et al. 2019), permafrost extent (orange), marine BGC (green mesh), major rivers (blue) and coastal shipping channels (magenta).

1: How realistic are fully-coupled E3SM ensemble projections of land hydrology and the Arctic Ocean, including sea ice and biogeochemistry, over the observational period from 1979 to the present?

2: What impact does global internal variability have on the timing of seasonal sea ice breakup along Alaskan coasts and transport routes in E3SM, and on autumnal freeze-up in the 21st century?

3: Work closely with RGMA and MSD programs on integrated question related to (1) and (2) above.

Arctic coastal interactions are heavily dependent on sea ice

Above: Sea ice drift from 30-years of E3SM-HR (Caldwell et al. 2019), permafrost extent (orange), marine BGC (green mesh), major rivers (blue) and coastal shipping channels (magenta).

These questions are being addressed by implementing important missing elements in a high state of readiness for coupled polar applications: 1 - Improvements in mixing and stratification; 2 - Implementation of Benthic Biogeochemistry; 3 - Advances in modeling permafrost hydrology; 4 - Improvements in coastal sea ice representation

The InteRFACE Model Configuration

We have worked with the E3SM Water Cycle group on the WC14 mesh, including features critical for modeling American Arctic coasts that help address energy-related questions. (circles locate maps in next slide) The InteRFACE Model Configuration

Standard resolution atmosphere, tripole grid $(1/8^{\circ} \text{ runoff})$, and the WC14 ocean-ice mesh at 60 levels that refines shipping channels, benthic habitats, runoff and landfast ice. Canadian Archinelago Alaskan Northern Coast 304050 100 250500 7501000 1500 2000 3000 4000 E3SM-HR V1 coastline 20 m 50 m

Above: Expansion of circled areas in the previous slide to demonstrate local details

Coastal improvements in collaboration with X. Asay-Davis

A balance between resolution and ensemble generation

8km refinement

- · Realistic Gulf Stream separation and Extension
- Strongly eddying in refined regions
- Refinement cuts through Subpolar & Beaufort gyre
- 850k core-hours/model-century •

12km refinement

- Less realistic Gulf Stream separation and Extension
- Moderate eddving in refined regions
- Refinement cuts through Subpolar & Beaufort gyre
- 450k core-hours/model-century

14km refinement

- Less realistic Gulf Stream separation and Extension
- Moderate eddving in refined regions
- Grid refinement boundary is south of the Gulf Stream Extension, doesn't artificially modify gyres
- 330k core-hours/model-century

Sea Surface Height (m)

M. Maltrud Development of Regionally Refined Ocean/Sea Ice Meshes for E3SMv2 (see poster)

Oceanic Mixing and Stratification

GOAL: Better parameterization of Ocean surface boundary layer that:

- Physically based, energetics included .
- Capture both local, non-local fluxes .
- Computationally inexpensive with better accuracy
- Can easily integrate other physical phenomenon
- Can be implemented in large-scale ocean models

A new unified eddy diffusivity parameterization for OSBL Assumed distribution high order closure (ADC)

- Cross fertilization of mass flux closure and ingine order and Fewer prognostic equation needed than a traditional high level closure and b
- Inherent ability to represent non-local transport .
- Lateral Entrainment and sub-plume scales are parameterized
- Higher moments are guaranteed realizable

Mixing: Higher-Order Closure Results Compared to LES

Mean profile 1m: dashed line, 2m : dotted line, 5m: star, 10m: circle. Dotted black line: initial stratification, solid black: LES. Results are independent of vertical resolution.

Important result: Reduced dependence on vertical mesh configuration compared to KPP.

Ocean benthos biogeochemical module for MPAS-O in E3SM

Current milestones

- A 1D prototype model (Matlab) with 35 reactive tracers. Validating against observations in the Arkona Basin.
- A 3D (Fortran) implementation in MPAS_0, 1-way coupled with ocean BGC. Verifying against prototype model

Benthic BGC implementation by N. Jeffery (Thursday talk in 3rd breakout D4S2)

Arkona Basin, Baltic Sea Benthic GBC Test Case Spin-up

Benthic BGC implementation by N. Jeffery (Thursday talk in 3rd breakout D4S2)

Coupling the Advanced Terrestrial Simulator with MOSART

Proof of concept by E. Coon, J. Schwenk, and T. Zhou in collaboration with ICoM

Permafrost Hydrology: Coupling the ATS with MOSART

Proof of concept by E. Coon, J. Schwenk, and T. Zhou in collaboration with ICoM

Sea Ice Model Development: Icepack in MPAS-SeaIce

Icepack is being implemented and adapted in E3SM as part of InteRFACE and E3SM core developments, and in collaboration with a number of ESMD entities.

Project Integration using E3SM V2 and Future Timeline

Simulation Campaign					2020				2021				2022		
Task	Code Base	Configur	ation Quarter:	1	2	3	4	1	2	3	4	1	2	3	
2.1		G	InteRFACE configuration baseline												
	E3SMV2	BP	InteRFACE 1950 atmospheric constituents 200-year baseline												
		BH	InteRFACE 1950-2015 10-member historic ensemble baseline												
2.2		MPAS	Landfast ice development											_	
		G	Landfast ice experimentation												
	V2+I+64L	BP	Landfast ice coupled 1950 atmospheric constituents 200-year												
		BH	Landfast ice coupled 1950-2015 10-member historic ensemble												
2.3		LES	Mixed layer LES experiments												
		MPAS	Mixed layer development												
		G	Mixed layer experimentation												
	V2+64L	BP	Mixed layer coupled 1950 atmospheric constituents 200-year												
		BH	Mixed layer 1950-2015 coupled 10-member historic ensemble												
2.4		MPAS	Wave code development				_						_	_	
		G	Wave experimentation												
	V2+I+64L+W	BP	Wave coupled 1950 atmospheric constituents 200-year												
		BH	Wave ice coupled 1950-2015 10-member historic ensemble												
2.5		ATS	Hydrology development with ATS												
	V2+64L+M	BP	Hydrology coupled 1950 atmospheric constituents 200-year												
		BH	Hydrology coupled 1950-2015 10-member historic ensemble												
2.6		MPAS	BGC development											_	
		G	BGC experimentation												
	V2+I+64L+B	BP	BGC coupled 1950 atmospheric constituents 200-year												
		BH	BGC coupled 1950-2015 10-member historic ensemble												
2.7	V2+I+64L	BF	Projection 2015-2050 SSP5 from O1-BH 10-member ensemble												
		BF	Projection 2015-2050 SSP5 from O3-BH 10-member ensemble												
	V2+I+64L+M+B	BF	Projection 2015-2050 SSP5 from O6-BH 10-member ensemble												

InteRFACE model configurations: MPAS: Model for Prediction Across Scales; LES: Large Eddy Simulations; ATS: Advanced Terrestrial Simulator; G: E3SM ice-ocean forced with JRA-55; BP: Fully coupled (B-case) 100 year simulation with perpetual 1950 HighResMIP atmospheric constituents; BH: B-case with transient atmospheric constituents from 1950 to 2015 with 10 ensemble members; BF: forward projections to 2015-2050. Code base notation follows the ESMD Tasks.