Enhancing aerosol predictions on the global scale with particle-resolved modeling and machine learning

Nicole Riemer

Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign

with Zhonghua Zheng, Jeff Curtis and Matthew West

October 29, 2020

Aerosol science — a multiscale problem

Real particles in the ambient atmosphere

Li et al., Atmospheric Environment, 45, 2488-2495, 2011

Traditional aerosol representations in models

- Modal and sectional models are distribution-based.
- Inherent assumption: All particles in one mode/bin have the same composition.
- Mixing state is an "unknown unknown" structural uncertainty of the model.

Could we do this instead?

- PartMC-MOSAIC:
 - No modes or bins.
 - Instead: discrete particles Particle-resolved modeling
 - Evolution of mixing state is straight-forward to represent.
 - Computationally expensive.

Stochastic aerosol model PartMC-MOSAIC

- PartMC: simulates coagulation, particle emissions, dilution, nucleation stochastically.
- MOSAIC: simulates gas phase chemistry, aerosol thermodynamics deterministically (Zaveri et al., 2008)

 $\label{eq:Figure courtesy of R. Zaveri, PartMC is open source, http://lagrange.mechse.illinois.edu/partmc/$

Role of PartMC in the model hierachy

Aerosol populations are mixtures of mixtures

 "The same net composition of an aerosol can be caused by an infinite variety of different internal distributions of the various compounds." (Winkler, 1973)

• Metric: Mixing state index $\chi = \frac{D_{\alpha}-1}{D_{\gamma}-1}$

Error quantification: Does it matter?

Error in CCN concentration when assuming average composition

How does mixing state vary globally?

Mixing state index

"Brute-force modeling": WRF-PartMC

Particle-resolved modeling on the regional scale with WRF-PartMC

Curtis et al., GMD, 2017; Curtis et al., in preparation for GMD

- 170 x 160 x 40 domain
- 6,656 cores on Blue Waters
- 10 billion computational particles

What we want:

How we train the model for χ

PartMC box model outputs

Global distribution of mixing state

- Used CESM/MAM4 as GCM
- **•** XGBoost to train emulator that predicts χ .
- Uses bulk aerosol concentrations, gas phase concentrations, meteorological variables that are available in CESM.

Zheng et al., Earth and Space Science, under review

Next steps

- Aerosol module MAM4 represents mixing state to some extent.
 - Two distinct accumulation modes, fresh and aged carbonacous aerosol

How does MAM4 mixing state differ from PartMC-emulated mixing state?