
Cryosphere Campaign – Phase 2 Status

Stephen Price, Wuyin Lin, Mark Petersen, and the E3SM Cryosphere Team

Science Questions

What are the impacts of ocean-ice shelf interactions on melting of the Antarctic Ice Sheet, the global climate, and sea level rise? [using V1 model]

How will the atmosphere, ocean and sea-ice systems mediate sources of sea-level rise from the Antarctic ice sheet over the next 30 years? [using V2 model]

V1 Science Question

What are the impacts of ocean-ice shelf interactions on melting of the Antarctic Ice Sheet, the global climate, and sea level rise?

Status:

- demonstrate century-scale, stable, realistic Antarctic ice shelf melt rates in global, fully coupled, low-res. configuration (<u>Comeau et al., *in prep.*</u>)
- exploration and demonstration of impacts of including explicit sub-shelf melt rates on S.
 Ocean climate (Jeong et al., J. Climate, 2020)
- identification / confirmation of "tipping points" in sub-shelf circulation and melting that would have significant impacts on Antarctic-sourced SLR and global climate (~10x increase in sub-shelf melt rates and S. Ocean freshwater flux; <u>Hoffman et al., *in prep.*</u>)
- exploration of the impacts of S. Ocean climate variability on sea-level rise from Thwaites Glacier (<u>Hoffman et al., JGR Earth Surf., 2019</u>)
- analysis of V1 atmos. polar climate (Lee et al., Earth Space Sci., 2019; Clim. Dyn., 2020)
- S. Ocean climate improvements in high-res. E3SM v1 (Jeong et al., J. Climate, in review)
- identification of critical ocean param. improvements needed for obtaining reasonable S.
 Ocean climate in E3SM v1 (<u>Comeau et al., *in prep.*</u>)

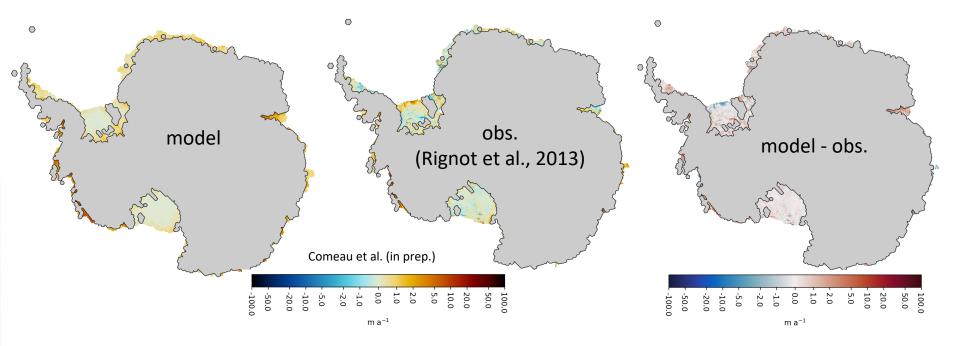
V1 Simulation Campaign

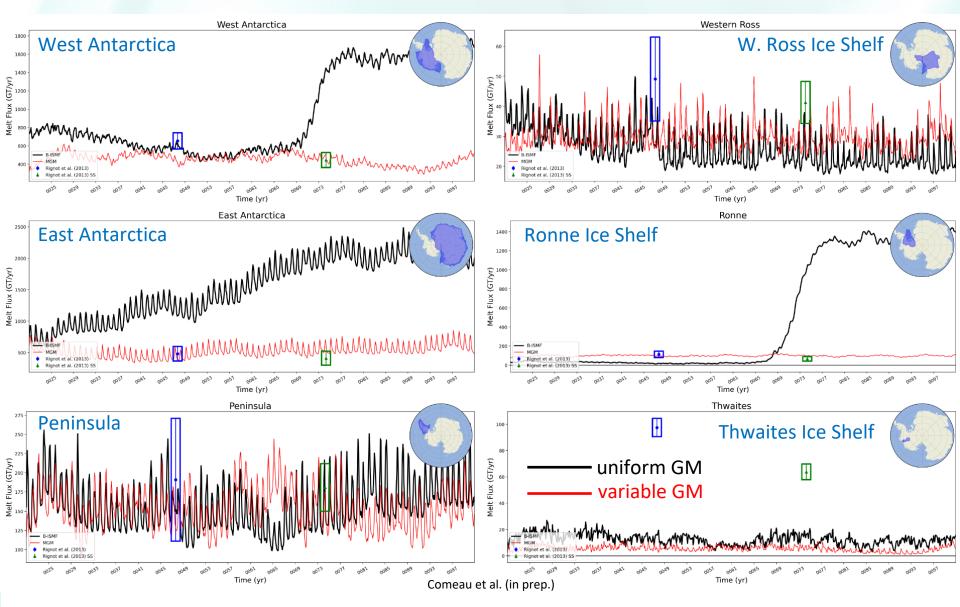
Table 3. E3SM v1 Cryosphere experiment: Planned simulations.

Simulation	Atmos (km)	Ocean (km)	Simulated Years	Notes
Pre-industrial (1850) control with ice cavities	100	30-60	250	Water Cycle Experiment is the control. Single member branched at year 250 from water cycle simulation.
Historical transient (1850- 2014) with ice cavities	100	30-60	175	Water Cycle Experiment is the control. Single member. Continuation of Pre-industrial (1850) control with ice cavities.
Abrupt 4xCO2 with ice cavities	100	30-60	150	Water Cycle Experiment is the control. Single member. Continuation of Pre-industrial (1850) control with ice cavities
CORE-II w/ and w/o ice cavities	data	6-18	50	The standard high-resolution ocean mesh.
CORE-II w/ and w/o ice cavities	data	6-60	300	Variable resolution ocean simulation utilizing the low- resolution ocean mesh northward of 20S and tapering to the RRS southward of 20S.

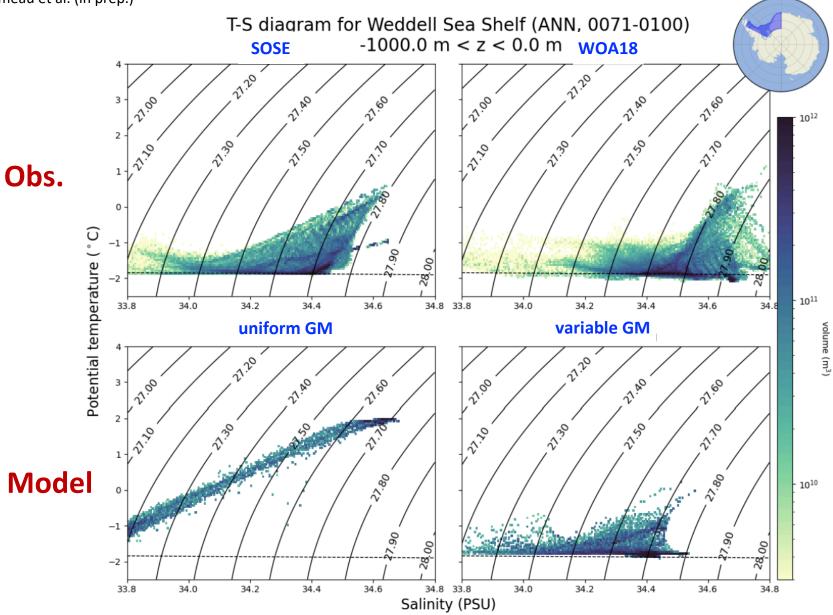
V1 Simulation Campaign

Table 3. E3SM v1 Cryosphere experiment: Planned simulations.

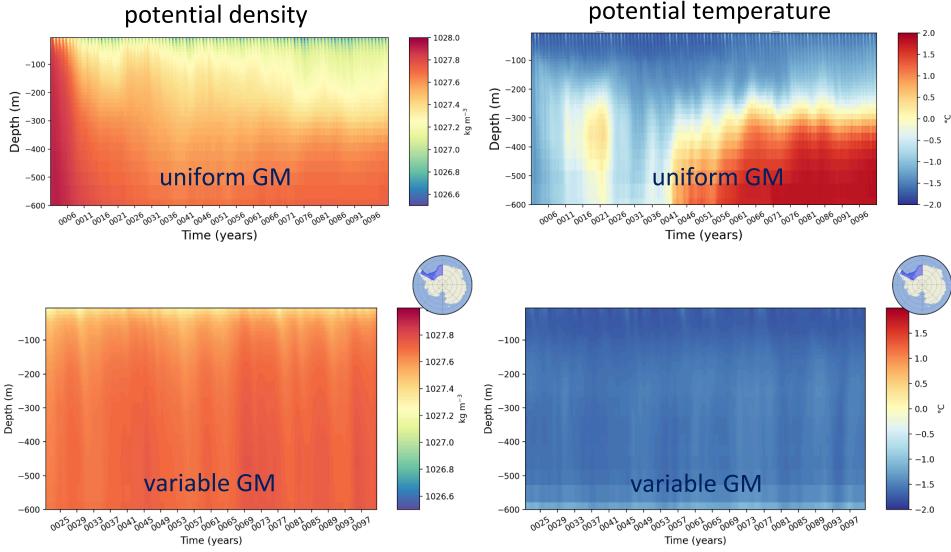

Simulation	Atmos (km)	Ocean (km)	Simulated Years	Notes
Pre-industrial (1850) control with ice cavities	100	30-60	250	Water Cycle Experiment is the control. Single member branched at year 250 from water cycle simulation.
majority of effort	spent or	i stable,	realistic, co	upled-model simulation under PI forcing
CORE-II w/ and w/o ice cavities	spent or data	6-18	50	upled-model simulation under PI forcing The standard high-resolution ocean mesh.


V1 Results: standard resolution configuration

- 60 km res. at mid. lats.; 30 km res. at high lats. (GM eddy closure)
- ocean circulation and freshwater / heat fluxes exchanged in (fixed) Antarctic ice shelf cavities
- data iceberg climatology for Southern Ocean (Merino et al. 2016)
- global, coupled (active atmos., ocean, sea ice), pre-industrial forcing


*** see Comeau et al. poster #1; Lin et al. poster (PS1, Tues. afternoon) ***

V1 Results: simulated sub-ice shelf melt rates



Weddell Sea Shelf T, S, rho

Comeau et al. (in prep.)

Weddell Sea Shelf density & T over time

Comeau et al. (in prep.)

V2 Science Question

How will the atmosphere, ocean and sea-ice systems mediate sources of sea-level rise from the Antarctic ice sheet over the next 30 years?

Status:

- simulations with prototype S. Ocean Regionally Refined Mesh (SORRM) configurations also give reasonable melt rates and S. Ocean climate
- analysis of V1, high-resolution simulation (no ice shelf cavities) provides insight on biases and their causes (<u>Jeong et al.</u>, <u>J. Climate</u>, in review); we are likely to see same biases in our SORRM configured simulations:
 - S. Ocean low pressures systems and winds too strong in hi-res. atmos.
 - Ant. Slope Front (ASC) & Current (ASC) OK for EAIS; too strong for WAIS
 - "fresh shelves" nearly everywhere
 - "dense shelves" absent => deep water formation and density structure
 - "warm shelves" absent => ice sheet / ocean interactions
 - wind biases impact sea ice, which in turn impacts dense water formation on continental shelves, which in turn impacts ocean density structure

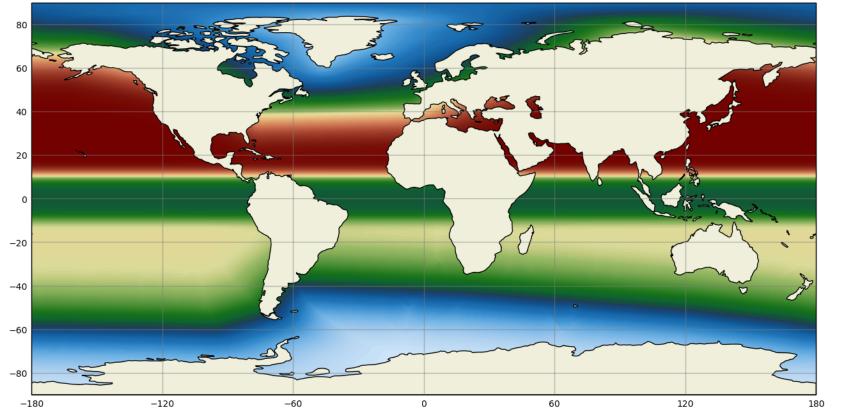
V2 Simulation Campaign

Table 6. Simulations for the cryosphere system using E3SM v2. All simulations will be conducted with ice shelf cavities.

CORE-II with and without ice cavities	Data	6-60	50	Restart from end of related v1 CORE II simulation but with v2 model physics
Historical transient (1950-2020)	100	6-60	70	Uses CORE-II spinup for ocean & sea ice initial conditions
SSP5-8.5 scenario (2020-2070) with ozone holes	100	6-60	50	Branched from historical run (5 ensemble members)
SSP5-8.5 scenario (2020-2070) <u>without</u> ozone holes	100	6-60	50	Branched from historical run
Historical transient (1950-2020)	25-100	6-60	70	as above but with hi-res RRS atmosphere
SSP5-8.5 scenario (2020-2070)	25-100	6-60	50	as above but with hi-res RRS atmosphere

V2 Simulation Campaign

Table 6. Simulations for the cryosphere system using E3SM v2. All simulations will be conducted with ice shelf cavities.


CORE-II with and without ice cavities	Data	6-60	50	Restart from end of related v1 CORE II simulation but with v2 model physics
Historical transient (1950-2020)	100	6-60	70	Uses CORE-II spinup for ocean & sea ice initial conditions
SSP5-8.5 scenario (2020-2070) <u>with</u> ozone holes	100	6-60	???	Branched from historical run (5 ensemble members)
SSP5-8.5 scenario (2020-2070) <u>without</u> ozone holes	100	6-60	50	Branched from historical run
Historical transient (1950-2020)	25-100	6-60	70	as above but with hi-res RRS atmosphere
SSP5-8.5 scenario (2020-2070)	25-100	6-60	50	as above but with hi-res RRS atmosphere

• possible addition of similar suite of runs using low-res. configuration (if ocean-heatcontent biases can be resolved at low-resolution)

V2 Results: variable resolution configuration

50

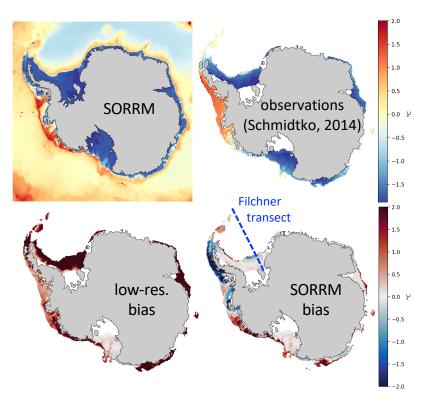
40

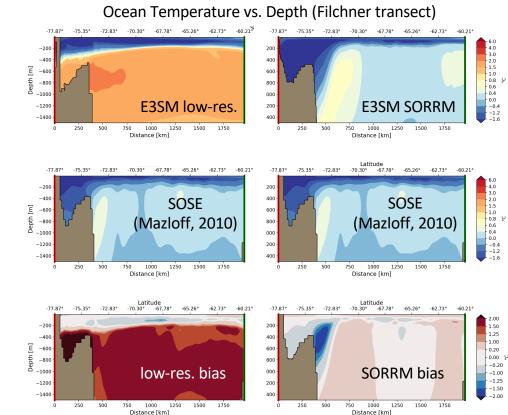
- 30

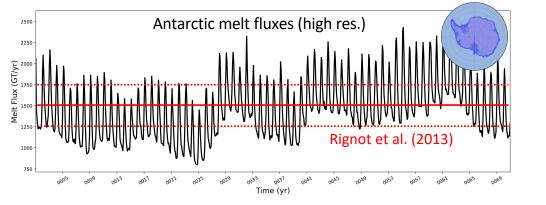
20

Grid cell size, km, min: 12.2 max: 60.0

*** see Asay-Davis et al. poster (PS1, Tues. afternoon) ***

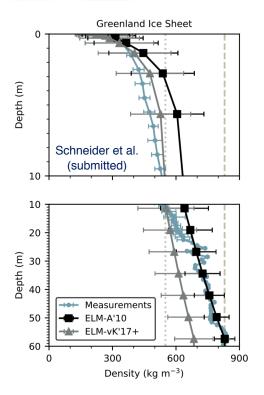

V2 Results: variable resolution configuration

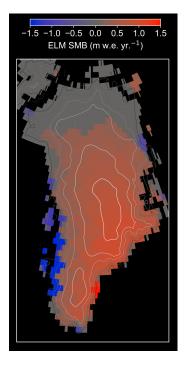

- 60 km res. at mid. lats.; ~10 km res. in S. Ocean (eddy permitting)
- ocean circulation and freshwater / heat fluxes exchanged in (fixed) Antarctic ice shelf cavities
- data iceberg climatology for Southern Ocean (Merino et al. 2016)
- global, coupled (active atmos., ocean, sea ice), pre-industrial forcing



*** see Comeau et al. poster #2 (PS1, Tues. afternoon); Lin et al. talk (Thurs. afternoon) ***

V2 Results: variable resolution configuration

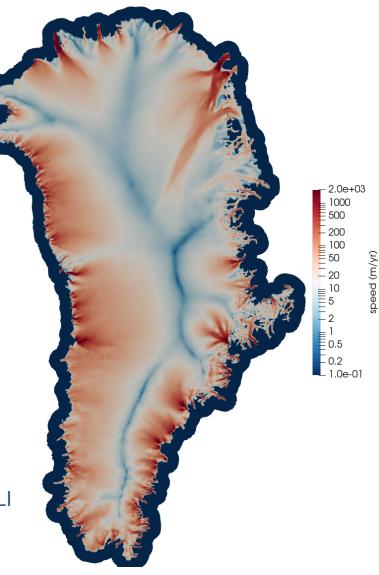



Higher ocean / ice res. around Antarctica improves on low-res. biases in regions with no GM closure

V2: other model developments

- regionally refined atmos. mesh (testing / coupling w/ SORRM in progress)
- improved ozone chemistry and simulation of S. hemis. ozone hole
- improved cloud water liquid vs. ice ratio (improved cloud radiative forcing over S. Ocean and Antarctica)
- systematic improvements in ocean/ice mesh generation and QC
- numerous improvements to low- and high-resolution ocean/ice meshes
- unification of snow radiation scheme (for snow on land vs. sea ice)
- multiple improvements to snow-on-sea ice physics and radiation schemes

V2+: Dynamic Greenland Ice Sheet in E3SM



ELM snowpack model improvements (above left)

Greenland surface mass balance spun-up in E3SM (above right).

Greenland ice sheet surface speed from optimized MALI initial condition in E3SM (right)

*** see Price et al. poster (PS2, Weds. afternoon) ***

Summary

V1 configuration (low resolution):

- more effort than anticipated to get reasonable S. Ocean climate and stable ice shelf melt rates under PI forcing
- important model biases identified and addressed
- physically realistic (and relevant to future?) sub-ice shelf circulation and melting instabilities identified
- hope is to continue with hist., 4xCO2, SSPs, etc. using similar low res. config.

V2 configuration (high / var. resolution):

- better S. Ocean climate and stable / realistic melt rates using SORRM; initial simulations look good (out to ~60 years)
- important coupled model biases (atmos., ocean, sea ice), identified from analysis of high-res. simulation are likely to apply here too
- waiting for final v2 tunings to proceed further

Other Related Work

Roberts et al. – E3SM polar climate in E3SM v1 and v2 (Thurs. Cryo breakout) Wang et al. – drivers of Greenland ice sheet melt in v1 (Thurs. Cryo breakout) *Lin et al.* – S. Ocean refined polar atmos. in v2 (Thurs. Cryo breakout) *Roberts et al.* – Interdisciplinary Research for Arctic Coastal Envs. – InterFACE (Tues. afternoon) *Hoffman et al.* – towards a regional sea-level enabled E3SM (Tues. afternoon) *Price et al.* – SciDAC ProSPect Project (Wed. afternoon) *Turner et al.* – SciDAC DEMSI Project (Wed. afternoon) *Comeau et al.* – v1 Cryo low res. ocean/ice results (PS1) *Lin et al.* – v1 Cryo low res. atmos. results (PS1) Asay-Davis et al. – v2 Cryo var. res. mesh generation (PS1) *Comeau et al.* – v2 Cryo var. res. ocean/ice results (PS1) *Price et al.* – towards a coupled Greenland ice sheet in E3SM (PS2) *Hillibrand et al.* – future SLR contribution of Humboldt glacier, Greenland (PS2) *Haeger et al.* – subglacial drainage beneath Thwaites Glacier, Antarctica (PS2) *Book et al.* – coupled solid earth and Thwaites Glacier evolution, Antarctica (PS2) Schneider et al. – improved ELM snowpack model for ice sheets (PS1) Martin et al. – BISICLES ice sheet model NGD (PS2)

Hunke et al. – CICE Consortium (PS2)

