Improving the Capabilities and Computational Efficiency of the RTE+RRTMGP Radiation Code

Robert Pincus, Columbia University Eli Mlawer, Atmospheric and Environmental Research Chiel van Heerwaarden, Wageningen University and Research (NL)

Making good radiation better

Robert Pincus, Columbia University Eli Mlawer, Atmospheric and Environmental Research Chiel van Heerwaarden, Wageningen University and Research (NL)

The past

RTE+RRTMGP is a new radiation code brought to you by me and AER (RRTMG)

RTE solves the radiative transfer equation; RRTMGP defines a problem for gases

RRTMGP is accurate because it's trained on current spectroscopic data, but algorithms are well-established*. The focus was computational, with inter-related goals of flexibility, efficiency, and hygiene

*Well-established but complete: including scattering of LW radiation, flexible coupling with surface properties, sophisticated examples of cloud optics...

See <u>https://github.com/earth-system-radiation/rte-rrtmgp</u>, <u>https://doi.org/10.1029/2019MS001621</u>

The present

Code is integrated into E3SM, default within ECP, just missed v2 water cycle campaign

WUR built a C++ front end (used as part of RCEMIP)

A collaboration with DOE started us on the road to an OpenACC GPU enabled version. This is now running at CSCS for very high-resolution QUIBICC simulations as part of an all-GPU version of ICON

Usability enhancements: Jacobian of longwave flux w.r.t surface temperature, more flexible specification of solar source (NRLSSI2,TSI)

Algorithmic enhancements: faster treatment of scattering of LW radiation by clouds; pre-processing for topography

Two ML replacements for gas optics lookup tables (but not ready for prime time)

Spinoffs: Clima/Julia, ECP/YAKL... at least we made it look easy

The future

More GPU: CUDA kernels, integrate OpenMP integration (Nichols Romero LANL)

More C++ (targeted SCREAM): front-end to synchronize development with Fortran reference

Less "cost": develop alternative data with varying spectral detail and sensitivity, targeted at applications

More physics: first-order effects of a spherical atmosphere, more consistent treatment of gas and cloud optics

Less shoe-horning: investigate alternative spectral structures for better coupling to vegetation, ocean