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Motivation
• Global high-resolution ESMs:

– Resolve more fine-scale features, e.g. orographic lifting, coastlines, mesoscale eddies, etc.
– Improve mean, variability, MJO, tropical cyclones, atmospheric blocking, jet streams, tropical and extra-

tropical cyclones, teleconnections [e.g. Delworth et al. 2012, Kinter et al. 2013, Mahajan et al. 2018, etc.]

• High-resolution models simulate stronger extremes [e.g Wehner et al. 2014, Johnson et al. 2016, Li et 
al., 2016 ]:

– Global ESMs allow studying extremes in context of their large-scale environment as compared to RGCMs.

• Evaluate teleconnections of ENSO to precipitation extremes:
– US winter precipitation, when convective precipitation is subdued
– Use Generalized Extreme Value (GEV) theory
– Plausible mechanisms
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Model and Data
• E3SM v1 High-Resolution water cycle 1950 control simulation (Caldwell et 

al. 2019):
– ne120 Years 26-123 (98 yrs, HR)

• E3SM v1 Low-Resolution DECK Historical Simulation (Golaz et al. 2018):
– ne30 (4 members) coupled run, 1979-2014 (LR) 

• NOAA CPC gauge-based daily precipitation data (0.5x0.5) [Xie et al. 
2007]

• MERRA2 Reanalysis (0.5x0.675) [Rienecker et al. 2011]
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Generalized Extreme Value (GEV)

• Extreme Value Theory: Linearly 
normalized values of the max./min. 
of a process belong to GEV
irrespective of the distribution of the 
population

• Analogous to central limit theorem: 
sample means belong to normal 
distribution

G(z) = exp

⇢
�[1 + ⇠(

z � µ

�
)]�1/⇠

�

Source: Wikipedia - http://en.wikipedia.org/wiki/File:GevDensity.svg#/media/File:GevDensity.svg

z : 1 + ⇠(z � µ)/� > 0

defined on:

where µ, s and x represent the location, scale and shape parameter respectively.
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GEV

• Here, monthly maximum of daily precipitation in NDJF 
season

• Parameters estimated using Maximum Likelihood:
• Maximizes the probability of the occurrence of the fitting data
• Parameters ~ multivariate normal distribution
• Return periods can be easily derived

• Non-stationarity in parameters can be introduced, e.g.:

where, t, is a covariate index, like time, Nino3.4, etc.
µ = µ0 + ↵t

G(z) = exp

⇢
�[1 + ⇠(

z � µ

�
)]�1/⇠

�
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Extremes: CPC Data and E3SM v1 HR and LR Simulations
G(µ, s, x) High Resolution ModelCPC Data

Low Resolution Model Low Resolution Model: HR model tuning

Location Parameter of GEV (mm/day)

a. b.

c. d.
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Extremes: HR and LR 

manuscript submitted to JGR: Atmospheres

We also use NASA’s MERRA2 to evaluate the simulated atmospheric flow by the mod-217

els.218

The high- and low- resolution model tuning parameters di↵er for the Zhang Mc-219

Farlane (ZM) deep convection scheme, CLUBB scheme and in the dust emission factor.220

The time steps were also altered in the HR model to maintain numerical stability (Caldwell221

et al., 2019). It should be noted that the di↵erences in our results in the following sec-222

tions for HR and LR thus are not just due to di↵ering resolution but also due to these223

other changes. Overall, the HR model generally improves upon the low resolution model224

based on global root mean square error metrics, and significantly improves the sea-ice225

simulations over the Labrador sea (Caldwell et al., 2019). LR and HR exhibit similar ENSO226

charateristics and statistics in terms of spatial pattern as well as frequency spectrum (Caldwell227

et al., 2019).228

3 Methodology229

3.1 Generalized Extreme Value Distribution230

We quantify precipitation by using the block maxima approach of Generalized Ex-231

treme Value (GEV) distribution. GEV is a three parameter distribution that estimates232

the probability distribution of the block maxima (maxima of a data block, e.g. annual233

or seasonal maximum) of a variable:234

G(z) = exp

⇢
�[1 + ⇠(

z � µ

�
)]�1/⇠

�
(1)

where µ,� and ⇠ represent the location, scale and shape parameter respectively of235

the distribution. Here, we use a block size of a month for daily precipitation. These pa-236

rameters are estimated using the maximum log-likelihood method. To quantify the im-237

pact of ENSO on precipitation extremes we use the Nino3.4 index as a linear co-variate238

to the location parameter, µ = µ0+↵Nino3.4t, where t is the Nino3.4 index for the cor-239

responding month. The linear dependence of µ to Nino3.4 index is represented by ↵Nino3.4,240

which is also estimated along with the other parameters while fitting the GEV to the241

data using the maximum log-likelihood approach. GEV is widely used to quantify ex-242

tremes as well as to understand their relationships with large scale climate drivers (Brown243

et al., 2008; Whan & Zwiers, 2017; Kharin & Zwiers, 2005; Mahajan et al., 2015; Evans244

et al., 2014; Mahajan et al., 2018).245

The GEV can be used to compute the return period of extreme events by invert-246

ing the GEV distribution:247

R(⌧) = µ+
�

⇠
(�log(1� 1/⌧)�⇠ � 1) (2)

Here, we fit a GEV to monthly maximum for the months of November to Febru-248

ary at each grid point following Whan and Zwiers (2017). Using seasonal maximum in-249

stead of monthly maximum yield qualitatively similar results and we do not discuss them250

further here.251

To establish the significance of the linear dependence of ENSO (↵Nino3.4) on ex-252

tremes we use a deviance statistic based test (Coles, 2001). Data is fit to the GEV with253

and without Nino3.4 as a linear covariate. The test statistic is the di↵erence in the max-254

imum log-likelihood estimates of the two fits (deviance). The null hypothesis of the de-255

viance statistic (D) is known and we use it to conduct statistical significance tests.256

We also apply corrections for multiple testing. Since we are simultaneously apply-257

ing statistical tests to each grid point say, at the 0.05 significance level, we can expect258

–6–

Return Period levels (R) can be computing by inverting G(z):

20 yr Return Period Level (mm/day)

LR E3SMv1 H1 HR E3SMv1
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High Resolution Model

CPC Data

Low Resolution Model

Nino3.4 dependent component of the location parameter of GEV (mm/day)

a.

b. c.

ENSO Teleconnections
µ = µ0 + ↵tG(µ, s, x)

t: Nino3.4 index

The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution

Journal of Advances in Modeling Earth Systems, Volume: 11, Issue: 7, Pages: 2089-2129, First published: 15 March 2019, DOI: (10.1029/2018MS001603) 

Caldwell et al., 2019

Golaz et al. 2019
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Storm track Activity
High Resolution ModelLow Resolution Model

Std dev. Of 2-6 day BPF Z500 (m)

Storm Tracks: Std dev. Of 2-6 day BPF Z500

Std dev. Of 2-6 day BPF Z500 (m)

ENSO Impact on Storm Tracks

MERRA2
a. b. c.

d. e. f.

High Resolution Model

CPC Data

Low Resolution Model

Nino3.4 dependent component of the location parameter of GEV (mm/day)

a.

b. c.
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High Resolution Model Low Resolution Model

Vertically Integrated Moisture Transport (kg/m/s)

Winter Season: Mean Moisture Transport

Regression Coefficient (kg/m/s)

ENSO Impact on Moisture Transport

MERRA2

Moisture Transport
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Moisture Transport During Extremes

High Resolution ModelLow Resolution Model

Composite: Vertically Integrated Moisture Transport (kg/m/s)

Moisture Transport During Extremes

MERRA2

Moisture Transport During Extremes During ENSO events

c.b.a.

d. e. f.
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Moisture Transport: Synoptic variability

High Resolution ModelLow Resolution Model

Standard deviation of Synoptic Scale Moisture Transport (kg m-1 s-1)

Regression: Synoptic Scale (10-day high-pass filtered) std. dev. of Moisture Transport on Nino 3.4 Index

MERRA2
a. b. c.
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Vertical Mass Flux

High Resolution ModelLow Resolution Model

Vertical Pressure Velocity (kg/m2)

Regression: Vertical velocity at 500 hpa on Nino 3.4 Index

a. b.
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Vertical Mass Flux During Extremes

High Resolution Model

Low Resolution Model

Vertical Pressure Velocity (Pa/s)

Vertical Velocity During Extremes Vertical Velocity During Extremes 
During ENSO events

Low Resolution Model

High Resolution Model
b.

a. c.

d.

Vertical Pressure Velocity (Pa/s)
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ENSO Diversity: ELI Index

Observations Low Resolution Model High Resolution Model

Nino3.4 vs. ELI
Patricola et al. 2019
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ENSO Longitutidinal Index (ELI): 
Average of longitudes over the tropical Pacific 
where SST > mean SST of global tropics 

NDJF
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ENSO Diversity: Extremes Response

High Resolution ModelCPC Data Low Resolution Model

ENSO dependent component of the location parameter of GEV (mm/day)

d.

b. c.

Using ENSO Longitudinal Index (ELI)

Using Nino3.4 Index

a.

e. f.
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ENSO Diversity: Storm Track Activity

High Resolution ModelLow Resolution Model

ENSO Impact on Storm Tracks: Using Nino3.4 Index

Std dev. Of 2-6 day BPF Z500 (m)

ENSO Impact on Storm Tracks: Using ELI Index

MERRA2a. b. c.

d. e. f.
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Summary
• High resolution (25km) E3SMv1 simulation better captures observed ENSO 

teleconnections to precipitation extremes over SE USA.

• Both low- and high-res models produce stronger than observed ENSO induced 
precipitation extremes over Pacific Northwest.

• Strong biases exist in storm track activity and moisture transport associated with ENSO in 
both models yielding stronger extremes response over P-NW.

• Improved SE USA response in high resolution simulation is due to improvement in ENSO 
induced moisture transport from the Gulf of Mexico and its synoptic variability.

• Plausible mechanism: HR produces stronger uplift in response to El Nino, yielding stronger 
stable condensation and larger latent heating of the troposphere, pulling in more 
moisture from the Gulf of Mexico into the SE USA causing extremes.

• Future work:
– Assess impact of ENSO diversity on results (e.g. Patricola et al. 2020)
– Role of blocking and atmospheric rivers
– Future projections, RRM, MMF, aerosols-only and GHG-only runs 



1919 Open slide master to edit

ENSO impacts on storm tracks: Coupled vs. Uncoupled

ne30 E3SM v1 Coupled ne30 E3SM v1 FAMIP

Regression Coefficient: Nino 3.4 index on Std Dev. of 2-6 day BPF Z500 (m)


