

Understanding the land-atmosphere interactions at grid and subgrid scales in E3SM

Meng Huang, <u>Po-Lun Ma</u>, Ruby Leung PNNL

> Nathaniel Chaney Duke University

PNNL is operated by Battelle for the U.S. Department of Energy

Pacific Northwest

Coupling of Land and Atmospheric Subgrid Parameterizations (CLASP)

Pacific

GFDL

- interact at grid scale.
- Our goal is to improve the coupling that accounts for land heterogeneity

Land-surface heterogeneity can affect the atmosphere (e.g., turbulence, clouds, and the surface climate).

 Current E3SM has subgrid treatments for land and atmosphere, but they

representation of land-atmosphere

How do we account for land heterogeneity? **CLUBB vs. CLASP surface boundary conditions**

- Surface moments needed to describe land-atmosphere interactions
 - Vertical fluxes: $\overline{u'w'}$, $\overline{v'w'}$, $\overline{w'\theta'}$, $\overline{w'q'}$
 - Second-order: $\overline{w'^2}$, $\overline{\theta'^2}$, $\overline{q'^2}$, $\overline{\theta'q'}$
 - Third-order: $\overline{w'^3}$, $\overline{w'^2\theta'}$, $\overline{w'^2q'}$, $\overline{w'\theta'^2}$, $\overline{w'q'^2}$, $\overline{w'\theta'q'}$

Default E3SM (CLUBB)

- aggregate the predictors from individual tiles (< Q_0 >, < u_* >, < ζ >)
- calculate the temperature variance 2.

New CLASP approach

- calculate the temperature variance at the tile level $(\overline{\theta'}_{i})$
- calculate the tile-aggregated temperature variance: 2.

$$\overline{ heta'^2} = \langle \overline{ heta'^2}_i
angle + \langle \overline{ heta}''_i
angle$$

u*: friction velocity Q₀: sensible heat flux ζ : stability parameter (Andre et al., 1978)

representative.

 $\overline{ heta'^2} = egin{cases} Q_0^2/u_*^2ig(4(1-8.3\zeta)^{-2/3}ig), \zeta < 0\ Q_0^2/u_*^2(4), \zeta > 0 \end{cases}$

E3SM Single Column Model (SCM)

• Experiments

- CTL (Control Experiment): Default configuration with **CLUBB** surface boundary conditions
- HET (Heterogeneity Experiment): Prescribed CLASP surface boundary conditions from HydroBlocks
- Continuous hourly large-scale forcing from ARM SGP, 6/1/2015-6/30/2015, every 30-min output
- Hindcast approach
 - SCM is initiated every day at 00 UTC, run for 2 days, and only 24-48 h simulations are combined as a continuous timeseries for analysis

January 2013

LoCo Coupling Metrics Toolkit – Heated Condensation Framework

Average θ_{def} from E3SM simulation in

Comparing HET surface moments with CTL

- Accounting for surface surface moments
- More variability over

heterogeneity greatly enlarges

heterogeneous surface than over homogeneous surface

Vertical profiles of HET and CTL

- Enlarged HET surface temperature variance could impact up to ~200 m high
- Corresponding buoyancy term (temperature variance times buoyancy parameter) generates the positive temperature flux
- Resulting in an increased TKE
- Leading to the enhanced vertical mixing and more developed PBL

Profiles averaged over 14-16 UTC (08-10 CT) 4 June 2015

n high ameter)

Significant monthly mean* and relative difference, even in SCM when the atmospheric profile is constrained

* Averaged over 2 (30 min) * 24 h (/day) * 30 days = 1440 times

	CTL	HET	(HET-CTL)/CTL*100 (%)
Precipitation (mm day-1)	3.16	3.29	+4.1
Total Cloud Fraction (%)	56	57	+1.8
Low Cloud Fraction (%)	9.5	8.5	-9.6
Mid-level Cloud Fraction (%)	17.0	16.6	-2.8
High Cloud Fraction (%)	52.3	53.4	+2.2
Liquid Water Path (g m-2)	19.8	17.2	-13.0
Ice Water Path (g m-2)	16.1	17.2	+6.6
Shortwave CRE (W m-2)	-48.5	-47.0	+3.1
Longwave CRE (W m-2)	30.0	30.8	+2.6
Net CRE (W m-2)	-18.5	-16.2	+12.4

- Increased precipitation and total cloud fraction
- Enhanced turbulent mixing transport more moisture upward, resulting in decreased low cloud fraction and LWP and increased high cloud fraction and IWP
- Increased SW CRE and LW CRE, resulting in a decrease in net CRE (implication on radiation balance and climate)
- Heterogeneous boundary conditions greatly impact the PBL turbulence and convection

- Accounting for surface heterogeneity
 - enhances turbulent mixing
 - results in deeper PBL
 - transports moisture to higher level, forming more (less) ice (liquid) clouds
 - increases precipitation
- Next Steps
 - implement the CLASP approach in ELM
 - better understand the coupling between ELM and EAM
 - perform SCM and global simulations to assess impacts of land-surface heterogeneity

Thank you

