
An opinion: ML for radiation

The first applications of ML in atmospheric modeling were emulators for radiation.
This is a terrible idea.

Radiation packages combine empirical bits with analytic approximations to well-
known governing equations

Using ML to solve the radiative transfer equation is like using ML for advection

So: use ML to speed the empirical bits, correct for errors in formulation (“physical
regularization”)… but don’t emulate the radiative transfer solver

ML as interpolator

In the last year I’ve worked with two different grad students building neural
networks emulators for the table look-ups used by the “gas optics” in RRTMGP.
(See Menno Veerman’s talk in #D4S1BR#3 Infrastructure)

It’s computationally cheap to compute training data but takes care to span the input
space. Both studies started with sparse samples and in-filled.

Physical understanding was key to generalizability (training data arrives as vertical
integral; generalization requires fitting specific absorption)

Interesting discussions of pragmatic issues including hyper parameter tuning:

Menno Veerman et al: https://doi.org/10.1098/rsta.2020.0095
(preprint at https://arxiv.org/abs/2005.02265)

Peter Ukkon et al: https://doi.org/10.1029/2020MS002226 (coming soon)

https://doi.org/10.1098/rsta.2020.0095
https://arxiv.org/abs/2005.02265

ML for gas optics++

The resulting networks are small, simple, and accurate. They are faster because
computational intensity and
highly-optimized routines

We could provide ML-accelerated gas optics in a week if we had a robust way to
efficiently batch-evaluate neural networks from within Fortran and/or C++

ML for gas optics- -

“Faster” means ~2x and relies on bespoke implementations of neural network
evaluators with ugly GPU implementations.

Sam Silva gave a shout-out to UCI’s more general FKB, but this relies on the speed
of a Fortran intrinsic for efficiency (ineffective especially cross-architecture). It also
implements a small subset of possible architectures.

Maybe we shouldn’t be reinventing the wheel? Could we build Fortran hooks to
existing (efficient, GPU-ified) frameworks (Pytorch, Keras)? Or will the overhead
be too large?

These aren’t idle questions - I’m working with Nvidia, Menno, Mike and others to
try strategies. But DOE/E3SM/…. could travel this path too.

Robust infrastructure to efficiently evaluate ML models from within Fortran and
C++ would get gobbled up.

