

E3SM Science Goals and Priorities

L. Ruby Leung, E3SM chief scientist

DOE ESMD/E3SM meeting, October 26 – 29, 2020

Overarching plan

Goals	Science Drivers	Strategies	Implementations
Understand Earth system variability and change	Water cycle: water availability, storms, floods and droughts Biogeochemistry: temperatures, heat extremes, wildfires Cryosphere: sea level rise, coastal inundation	 Push the high-resolution frontier of Earth system modeling Represent natural, managed and manmade systems across scales Quantify uncertainty using ensemble modeling 	 Regional refinement using unstructured grids (v2) Global cloud resolving modeling (v4 - exascale) Coupled human-earth system modeling (v2) Coastal modeling (v3/v4) Large-ensemble modeling (v4 - exascale) Use of ML/AI (v4)
Simulations, predictions, and projections to support DOE's energy mission			
Prepare for and overcome the disruptive transition to next era of computing			
Science que	stions → Model de	evelopment> Sim	ulation and analysis

Implementations through project phases

Phase 1 (2014-2018)

- Development of v1 from v0 based on CESM1
- Science questions focus on model behaviors:
 - Water cycle: impacts of resolution (1° vs. 0.25°); contrasting effects of forcing (all vs. GHG)
 - BGC: structural uncertainty in nutrient limitation; implications to carbon-climate feedback
 - Cryosphere: resolution sensitivity of modeling ocean-ice shelf interactions

Phase 2 (2018-2022)

- Development of v2 (incremental improvement in model capability and computational performance)
- Parallel next generation development (NGD) of v3/v4
- Science questions are more use-inspired addressed using RRM:
 - Water cycle: contrast local vs. large-scale impacts of human activities on floods and droughts
 - BGC: evaluate impacts of different energy futures on extremes
 - Cryosphere: impact of atmosphere, ocean, and sea-ice on Antarctic ice sheet melt rate

Implementations through project phases

Water cycle

Biogeochemistry

Cryosphere

V2 development and integration, v1 and v2 simulation campaigns, analysis to address science questions of the coupled system

Software and algorithm

Nonhydrostatic atmosphere model

Atmosphere physics

Energy and land

Ocean modeling

Dynamic ice sheet

Large ensemble modeling

Development towards v3 and v4, focusing on component models

Infrastructure

Performance

Code and data management, automated testing, timing and profiling, diagnostics, computational performance

Implementations through project phases

Phase 3 (2022-2025/26)

- Development of v3: integrating new capabilities from phase 2 NGD efforts
- Parallel development of v4: extension of phase 2 NGD and new NGD efforts
- Science questions include aspects to address model biases and understand model behaviors and advance use-inspired science

Water cycle: insights from v1

- E3SM v1 has high ECS partly due to large positive cloud feedback, with strong aerosol forcing
- E3SM v1 has high TCR, due partly to a weak AMOC
- These characteristics have important implications for projecting future water cycle changes
- Significant NGD development offers an opportunity to better constrain future projections of water cycle changes

Water cycle: v3 science

Water cycle: v4 science

GPU-enabled

Storm-resolving to standard resolution

Resolution frontier

- Impacts of model resolution on water cycle processes (through impacts on cloud feedback, ...)
- Impacts of air-sea interactions in cloudresolving atmosphere and eddy-resolving ocean simulations on hydrological cycle

Quantify uncertainty through large ensemble simulations

- Relative contributions of uncertainties from internal variability, model physics, grid resolution to uncertainties in water cycle
- Relationships between uncertainties in presentday and future water cycle

Biogeochemistry: v3 science

Land focused

V1: Impact of terrestrial CNP and nutrient competition on carbonclimate feedback

Human and land focused

V2: Implications of different energy futures for BGC through LULC, water availability, and extreme events Natural processes

Diagnostic CO₂

- Human-earth interactions
- Prognostic CO₂

Coupled system

V3: Impacts of changes in carbon, methane, and other nutrients on climate and the coupled earth system

- Natural/anthropogenic sources (e.g., energy, LU) and sinks (e.g., CO₂ removal)
- Anoxia through land-rivercoastal processes

Cryosphere: v3/v4 science

Ocean-ice shelf

Atmosphere, ocean, and sea ice forcing V1: Impact of ocean-ice shelf interactions on melting of Antarctic Ice Sheet (AIS)

V2: Mediation of atmosphere, ocean, and seaice to sea level rise from AIS

Biases in processes driving ice shelf melting, tipping points, and implications for global climate and coastal vulnerability

V3: Key uncertainties in projecting regional sea level rise

V4: Impacts of sea level rise and extreme storms on coastal inundation

Dynamic ice sheet (GIS and AIS) Offline RSL modeling

Online RSL modeling Coastal modeling

Questions?

More discussion of v3/v4 after the overview presentations