Parallel Exponential Time Differencing Methods for Ocean Dynamics

Lili Ju, Zhu Wang, Rihui Lan, University of South Carolina
Wei Leng, Chinese Academy of Sciences
Max Gunzburger, Florida State University

2020 ESMD-E3SM PI Meeting
Oct. 26 - Oct. 29, 2020

Outline

(1) Parallel ETD schemes for rotating SWEs

- Rotating SWEs and TRiSK scheme
- Exponential time differencing Runge-Kutta method
- Parallel global ETD method
(2) Parallel ETD schemes for primitive equations
- Primitive equations
- Barotropic-baroclinic splitting
- Parallel ETD for the barotropic solve

Project information

DOE Award

- "Efficient and Scalable Time-Stepping Algorithms and Reduced-Order Modeling for Ocean System Simulations", US Department of Energy Office of Science, 09/01/2019-08/31/2022.

Members

- UofSC: Lili Ju (Institutional Lead PI), Zhu Wang, Rihui Lan
- FSU: Max Gunzburger (Project PI and Institution Lead PI)
- LANL: Philip Jones (Institution Lead PI), Sara Calandrini

Collaborators

- Wei Leng, Chinese Academy of Sciences

Rotating shallow water equations - Single-layer case

Single-layer rotating SWEs in vector-invariant form

$$
\begin{align*}
& \frac{\partial h}{\partial t}+\nabla \cdot(h \boldsymbol{u})=0 \tag{1}\\
& \frac{\partial \boldsymbol{u}}{\partial t}+q\left(h \boldsymbol{u}^{\perp}\right)+g \nabla(h+b)+\nabla K=\boldsymbol{G}(h, \boldsymbol{u}) \tag{2}
\end{align*}
$$

- h : the fluid thickness, \boldsymbol{u} : the fluid velocity,
- \boldsymbol{k} : the unit vector pointing in the local vertical direction,
- $\boldsymbol{u}^{\perp}=\boldsymbol{k} \times \boldsymbol{u}$: the velocity rotated through a right angle,
- $\eta=\boldsymbol{k} \cdot \nabla \times \boldsymbol{u}+f$: the absolute vorticity and $q=\frac{\eta}{h}$: the fluid potential vorticity,
- $K=|\boldsymbol{u}|^{2} / 2$: the kinetic energy,
- g: gravity, f : Coriolis parameter and b : bottom topography,
- G: additional stress or diffusion terms.

Rotating shallow water equations - Multi-layer case

Assume that there are totally L layers of fluids.

Multi-layer rotating SWEs for the $/$-th layer

$$
\begin{align*}
& \frac{\partial h_{l}}{\partial t}+\nabla \cdot\left(h_{l} \boldsymbol{u}_{l}\right)=0 \tag{3}\\
& \frac{\partial \boldsymbol{u}_{l}}{\partial t}+q\left(h_{l}, \boldsymbol{u}_{l}\right)\left(h_{l} \mathbf{u}_{l}^{\perp}\right)+\nabla\left(K_{l}+g p_{l}(\boldsymbol{h}) / \rho_{l}\right)=\boldsymbol{G}_{l}(\boldsymbol{h}, \boldsymbol{u})
\end{align*}
$$

- The subscript / specifies the related layer with $1 \leq l \leq L$,
- ρ_{l} : the fluid density of layer l, and $\rho_{l}<\rho_{l+1}$, for $l=1, \ldots, L-1$,
- $\boldsymbol{h}=\left(h_{1}, h_{2}, \ldots, h_{L}\right)^{T}, \boldsymbol{u}=\left(\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{L}\right)^{T}$,
- Coupling through $\xi_{l}(\boldsymbol{h})=b+\sum_{k=l}^{L} h_{k}$: the layer coordinates and $p_{l}(\boldsymbol{h})=\rho_{l} \xi_{l}(\boldsymbol{h})+\sum_{k=1}^{l-1} \rho_{k} h_{k}$: the dynamical pressure,
- \boldsymbol{G}_{l} : additional stress or diffusion terms, e.g., wind stress or bottom friction.

TRiSK scheme: C-grid staggering in space

- Primal mesh: a Voronoi tessellation
- Dual mesh: its associated Delaunay triangulation
- Duality and orthogonality
- h_{i} : the mean thickness over primal cell P_{i}
- u_{e} : the component of the velocity vector in the direction normal to primal edges
- q_{v} : the mean vorticity over dual cell D_{v}
- Finite volume discretization
[Thuburn, Ringler, Skamarock and Klemp, JCP, 2009; Ringler, Thuburn, Klemp and Skamarock, JCP, 2010]

Discrete div, grad and curl operators

Divergence Th.: $\iint_{S} \nabla \cdot \mathbf{F} d S=\oint_{\Gamma} \mathbf{F} \cdot \mathbf{n} d \Gamma \quad$ Stokes' $^{\prime}$ Th.: $\iint_{S} \nabla \times \mathbf{F} \cdot d \mathbf{S}=\oint_{\Gamma} \mathbf{F} \cdot d \boldsymbol{\Gamma}$

Exponential time differencing

- System of ODEs resulting from spatial discretization:

$$
\begin{equation*}
\partial_{t} \boldsymbol{W}=\boldsymbol{F}(\boldsymbol{W}) \tag{5}
\end{equation*}
$$

- Exponential time differencing (ETD) at each time step interval $\left[t_{n}, t_{n+1}\right]$:
- Split the forcing term into a linear part and a remainder part:

$$
\begin{equation*}
\partial_{t} \boldsymbol{W}=\boldsymbol{J}_{n} \boldsymbol{W}(t)+\boldsymbol{R}_{n}(\boldsymbol{W}(t)), \tag{6}
\end{equation*}
$$

where $\boldsymbol{J}_{n}=\frac{\partial \boldsymbol{F}}{\partial \boldsymbol{W}}\left(\boldsymbol{W}_{n}\right)$ is the Jacobian matrix evaluated at \boldsymbol{W}_{n} and $\boldsymbol{R}_{n}=\boldsymbol{F}(\boldsymbol{W})-\boldsymbol{J}_{n} \boldsymbol{W}$ is the remainder.

- Use the variation of constants formula:

$$
\begin{equation*}
\boldsymbol{W}_{n+1}=e^{\Delta t J_{n}} \boldsymbol{W}_{n}+e^{\Delta t J_{n}} \int_{0}^{\Delta t} e^{(\Delta t-\tau) J_{n}} \boldsymbol{R}_{n}\left(\boldsymbol{W}\left(t_{n}+\tau\right)\right) d \tau \tag{7}
\end{equation*}
$$

where the time step size $\Delta t=t_{n+1}-t_{n}$.

ETD-RK schemes

- The exponential Rosenbrock-Euler (ETD-Rosenbrock):

$$
\boldsymbol{w}_{n, 1}=\boldsymbol{W}_{n}+\Delta t \varphi_{1}\left(\Delta t \boldsymbol{J}_{n}\right) \boldsymbol{F}\left(\boldsymbol{W}_{n}\right)
$$

- A two-stage second-order exponential Heun method:

$$
\left\{\begin{array}{l}
\boldsymbol{w}_{n, 1}=\boldsymbol{W}_{n} \\
\boldsymbol{w}_{n, 2}=\boldsymbol{W}_{n}+\Delta t \varphi_{1}\left(\Delta t \boldsymbol{J}_{n}\right) \boldsymbol{F}\left(\boldsymbol{W}_{n}\right), \\
\boldsymbol{W}_{n+1}=\boldsymbol{W}_{n}+\Delta t \varphi_{1}\left(\Delta t \boldsymbol{J}_{n}\right) \boldsymbol{F}\left(\boldsymbol{W}_{n}\right)+\Delta t \varphi_{2}\left(\Delta t \boldsymbol{J}_{n}\right)\left(\boldsymbol{R}_{n}\left(\boldsymbol{W}_{n, 2}\right)-\boldsymbol{R}_{n}\left(\boldsymbol{W}_{n}\right)\right)
\end{array}\right.
$$

where the φ-functions are $\varphi_{1}(z)=\frac{e^{2}-1}{z}$ and $\varphi_{2}(z)=\frac{e^{2}-1-z}{z^{2}}$.

- Allow for stable large time stepping with better accuracy than classic implicit schemes.
- Use Krylov subspace method to compute the products of matrix exponential and vector.
- The adaptive Krylov subspace method + Incomplete orthogonalization method (IOM), e.g., phipm/IOM2 [Gaudreault and Pudykiewicz, JCP, 2016].

Algebraic parallelization of ETDs

- The standard data-parallel is taken: each vector is split across all the processors/cores with corresponding subdomains, and the MPI environment is used for communications and performing the matrix exponential-vector product operations.
- Three types of ETD methods with the same second order accuracy are considered, for time stepping in the rotating shallow water equations: the ETD2-wave, the B-ETD2wave [Pieper, Sockwell and Gunzburger, JCP, 2020], and the ETD-Rosenbrock.
- The first two (use skew-Lanczos iteration in Krylov subspace method) rely on a Hamiltonian form of the equations and the assumption of zero reference state of the SWEs during simulations;
- The third (use Arnoldi iteration in Krylov subspace method) is numerically much more stable for general cases without these assumptions.
- We use the "Trilinos" Epetra package as the base for our parallel implementation within the MPAS-Ocean framework.

A technique for ETD-Rosenbrock

- In ETD-Rosenbrock, we split the Jacobian matrix into two parts for the multi-layer SWE model.
- The first part is layer-independent without the pressure term, so that we can compute the sub-Jacobian matrix on each layer independently; During the Arnoldi-process, we combine the sub-Jacobian matrix with its own layer data.
- The remaining Jacobian matrix only has the pressure part, which gathers all layers' thickness.
- In order to reduce its communication among all the calling processors/cores during the Arnoldi process, we first take the gradient operation locally on each layer, then combine all the resulting vectors.
- Update the Jacobian every 20 time steps.

The three-layer SOMA test: zero initial velocity

- 3 SCVT meshes with different resolutions
- $16 \mathrm{~km}: 22,007$ cells, 66,560 edges and 44,554 vertices;
- 8 km : 88,056 cells, 265,245 edges and 177,190 vertices;
- $4 \mathrm{~km}: 352,256$ cells, $1,058,922$ edges and 706,667 vertices.
- To measure the parallel efficiency, we define $E_{p}=\frac{r \cdot T_{r}}{p \cdot T_{p}}$, where T_{r} is the CPU time when the referential r processors are used, T_{p} is the running time for p processors.

Sea surface height (left) and velocity on the top layer (right) at $\mathrm{T}=1$ day.

Parallel performance

- Run a 1-day-long simulation on the NERSC Cori system: the time step size $\Delta t=107 \mathrm{~s}$ and the maximum number of Krylov vectors $M=45$.

Cores	ETD-Rosenbrock		ETD2wave		B-ETD2wave	
	Time	Efficiency	Time	Efficiency	Time	Efficiency
16 km						
8	194.64	-	76.64	-	27.99	-
16	100.14	92\%	43.11	89\%	17.87	78\%
32	84.82	58\%	27.22	70\%	12.56	56\%
64	35.71	68\%	16.10	70\%	8.17	43\%
8 km						
8	855.73	-	470.61	-	140.25	-
16	482.32	89\%	281.73	84\%	78.26	90\%
32	343.71	62\%	216.39	54\%	51.67	68\%
64	173.84	62\%	93.15	63\%	26.47	66\%
128	92.2	58\%	33.67	87\%	14.5	60\%
4 km						
16	2316.33	-	1414.57	-	528.83	-
32	1657.91	70\%	1069.01	66\%	364.62	73\%
64	737.64	79\%	478.49	74\%	157.13	84\%
128	369.09	78\%	221.02	80\%	53.99	122\%

The three-layer SOMA test: nonzero initial velocity

- ETD-Rosenberg provides the smallest approximation error, while the other two methods have approximation errors growing with time.
- Both ETD2wave and B-ETD2wave assume a zero reference velocity during the simulation in order to simplify the Jacobian matrix in the Hamiltonian fashion and utilize its skew-symmetry, which does not hold in this test case.

Time evolution of relative errors in fluid height in 4 days

Primitive equations

The equations for momentum, thickness, tracer, and state.
Primitive equations for z-level ocean motion

$$
\left\{\begin{array}{l}
\frac{\partial \boldsymbol{u}}{\partial t}+\eta \boldsymbol{k} \times \boldsymbol{u}+\omega \frac{\partial \boldsymbol{u}}{\partial z}=-\frac{1}{\rho_{0}} \nabla p-\frac{\rho g}{\rho_{0}} \nabla z^{\mathrm{mid}}-\nabla K+\boldsymbol{D}_{h}^{u}+\boldsymbol{D}_{v}^{u}+\mathcal{F}^{u} \\
\frac{\partial h}{\partial t}+\nabla \cdot\left(h \overline{\boldsymbol{u}}^{z}\right)=0 \tag{8}\\
\frac{\partial}{\partial t} h \bar{\varphi}^{z}+\nabla \cdot\left(h \overline{\varphi \boldsymbol{u}^{z}}\right)=\boldsymbol{D}_{h}^{\varphi}+\boldsymbol{D}_{v}^{\varphi}+\mathcal{F}^{\varphi} \\
\rho=f_{\mathrm{eos}}(\Theta, S, p)
\end{array}\right.
$$

Due to the well-posedness, (8) also needs the hydrostatic condition:

$$
\begin{equation*}
p(x, y, z)=p^{s}(x, y)+\int_{z}^{z^{s}} \rho g d z^{\prime} \tag{9}
\end{equation*}
$$

Primitive equations

Variables definitions

- \boldsymbol{u} : horizontal velocity; h : layer thickness; Θ : potential temperature; S : salinity;
- φ : generic tracer, it can be Θ or S;
- p : pressure; p^{s} : surface pressure;
- $z^{\text {mid }}:$ z-location of middle of layer; $z^{\text {s }}$: z-location of sea surface;
- $\boldsymbol{D}_{h}^{u}, \boldsymbol{D}_{v}^{u}$: momentum diffusion terms for horizontal and vertical directions;
- $\boldsymbol{D}_{h}^{\varphi}, \boldsymbol{D}_{v}^{\varphi}$: tracer diffusion terms for horizontal and vertical directions;
- Operator $\overline{(\cdot)}$: vertical average over the layer;
- ω : relative vorticity, $\omega=\boldsymbol{k} \cdot(\nabla \times \boldsymbol{u})$;
- η : absolution vorticity, $\eta=\omega+f$, where f is the Coriolis parameter;
- $\mathcal{F}^{u}, \mathcal{F}^{\varphi}$: momentum/tracer forcing.

TRiSK scheme

Layered system

Decompose the space vertically into L layers, and on Layer l :

$$
\begin{align*}
& \frac{\partial h_{l}}{\partial t}+\nabla \cdot\left(\widehat{h}_{l, e} u_{l}\right)+\frac{\partial}{\partial z}\left(h_{l} \omega_{l}\right)=0 \tag{10}\\
& \frac{\partial \boldsymbol{u}_{l}}{\partial t}+\frac{1}{2} \nabla\left|\boldsymbol{u}_{l}\right|^{2}+\left(\boldsymbol{k} \cdot \nabla \times \boldsymbol{u}_{l}\right) \boldsymbol{u}_{l}^{\perp}+f \boldsymbol{u}_{l}^{\perp}+\omega_{l, e} \frac{\partial \boldsymbol{u}_{l}}{\partial z}
\end{align*}
$$

$$
\begin{equation*}
=-\frac{1}{\rho_{0}} \nabla p_{l}+\nu_{h} \nabla^{2} \boldsymbol{u}_{l}+\frac{\partial}{\partial z}\left(\nu_{v} \frac{\partial \boldsymbol{u}_{l}}{\partial z}\right) \tag{11}
\end{equation*}
$$

$$
\frac{\partial h_{l} \varphi_{l}}{\partial t}+\nabla \cdot\left(\widehat{h}_{l, e} \varphi_{l, e} \boldsymbol{u}_{l}\right)+\frac{\partial}{\partial z}\left(h_{l} \varphi_{l} \omega_{l}\right)=\nabla \cdot\left(\widehat{h}_{l, e} \kappa_{h} \nabla \varphi_{l}\right)
$$

$$
\begin{equation*}
+h_{l} \frac{\partial}{\partial z}\left(\kappa_{v} \frac{\partial \varphi_{l}}{\partial z}\right) \tag{12}
\end{equation*}
$$

Barotropic mode

- Barotropic mode is to model the rapid external gravity waves;
- Barotropic velocity \bar{u} is defined as the mass-weighted vertical average:

$$
\overline{\boldsymbol{u}}=\sum_{k=1}^{L} \widehat{h}_{k, e} \boldsymbol{u}_{k} / \sum_{k=1}^{L} \widehat{h}_{k, e}
$$

- The perturbation of the sea surface height (SSH) $\zeta=h_{1}-\Delta z_{1}$, where Δz_{1} is the referential top layer thickness;
- Averaging (10)-(11) yields the barotropic thickness and momentum equations

$$
\begin{align*}
& \frac{\partial \zeta}{\partial t}+\nabla \cdot\left(\overline{\boldsymbol{u}} \sum_{k=1}^{L} \widehat{h}_{k, e}\right)=0 \tag{13}\\
& \frac{\partial \overline{\boldsymbol{u}}}{\partial t}+f \bar{u}^{\perp}=-g \nabla \zeta+\overline{\mathbf{G}} \tag{14}
\end{align*}
$$

where the barotropic force $\overline{\boldsymbol{G}}$ includes all the other terms in the barotropic equation.

Baroclinic mode

- Baroclinic mode is the remaining motions including the advective motions and internal waves;
- The baroclinic velocity $\boldsymbol{u}_{l}^{\prime}$ is defined as

$$
\boldsymbol{u}_{l}^{\prime}=u_{l}-\bar{u}, l=1, \ldots, L .
$$

- Subtracting (14) from (11) yields the baroclinic momentum equation

$$
\begin{align*}
\frac{\partial \boldsymbol{u}_{l}^{\prime}}{\partial t}+\frac{1}{2} \nabla\left|\boldsymbol{u}_{l}\right|^{2} & +\left(\boldsymbol{k} \cdot \nabla \times \boldsymbol{u}_{l}\right) \boldsymbol{u}_{l}^{\perp}+f \boldsymbol{u}_{l}^{\prime \perp}+\omega_{l} \frac{\partial \boldsymbol{u}_{l}}{\partial z} \\
& =g \nabla \zeta-\frac{1}{\rho_{0}} \nabla p_{l}+\nu_{h} \nabla^{2} \boldsymbol{u}_{l}+\frac{\partial}{\partial z}\left(\nu_{v} \frac{\partial \boldsymbol{u}_{l}}{\partial z}\right)-\overline{\boldsymbol{G}} . \tag{15}
\end{align*}
$$

Two-level approach with ETD for the barotropic solve

Two-level coupling approach

Solve the primitive equations with large globally uniform time steps based on the two-level coupling framework, which contains three stages at each step:

- Stage 1: Advance the baroclinic velocity explicitly;
- Stage 2: Compute the barotropic velocity by ETD method;
- Stage 3: Update thickness, tracers, density and pressure explicitly.

Stage 1 - Solve (15) for $\boldsymbol{u}_{l, n+1}^{\prime}$:

- Firstly, ignore $\overline{\mathbf{G}}$ and predict the baroclinic velocity by forword-Euler scheme:
- Secondly, compute $\overline{\boldsymbol{G}}$:

$$
\begin{equation*}
\tilde{\boldsymbol{u}}_{l, n+1}^{\prime}=\boldsymbol{u}_{l, n}^{\prime}+\Delta t\left(-f \boldsymbol{u}_{l, n}^{\perp}+\boldsymbol{T}^{u}+g \nabla \zeta_{n}\right) . \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\overline{\boldsymbol{G}}=\frac{1}{\Delta t} \sum_{k=1}^{L} \widehat{h}_{k, e} \tilde{\boldsymbol{u}}_{k, n+1}^{\prime} / \Sigma_{k=1}^{L} \widehat{h}_{k, e} . \tag{17}
\end{equation*}
$$

- Lastly, correct the baroclinic velocity $\boldsymbol{u}_{l, n+1}^{\prime}=\tilde{\boldsymbol{u}}_{l, n+1}^{\prime}-\Delta t \overline{\boldsymbol{G}}$.

Two-level approach with ETD for the barotropic mode (Contd.)

Stage 2 - Solve (13)-(14) for $\overline{\boldsymbol{u}}$:

- Rewrite (13)-(14) as a system,

$$
\begin{equation*}
\frac{\partial \boldsymbol{v}}{\partial t}=-\boldsymbol{F}(\boldsymbol{v})+\boldsymbol{b} \tag{18}
\end{equation*}
$$

where $\boldsymbol{v}=(\zeta, \overline{\boldsymbol{u}})^{T}, F(\boldsymbol{v})=\left(\nabla \cdot\left(\overline{\boldsymbol{u}} \Sigma_{k=1}^{\perp} \widehat{h}_{k, e}\right), f \overline{\boldsymbol{u}}^{\perp}+g \nabla \zeta\right)^{T}$, and $\boldsymbol{b}=(0, \overline{\boldsymbol{G}})^{T}$.

- The solution to Eq. (18) is

$$
\begin{equation*}
\boldsymbol{v}\left(t_{n+1}\right)=e^{\Delta t J_{n}} \boldsymbol{v}\left(t_{n}\right)+\int_{0}^{\Delta t} e^{(\Delta t-\tau) J_{n}} \boldsymbol{b} d \tau \tag{19}
\end{equation*}
$$

where $J_{n}=-D F\left(\boldsymbol{v}_{n}\right)=\left[\begin{array}{cc}-\nabla \cdot(\overline{\boldsymbol{U}} \bullet) & -\nabla \cdot\left(\bullet \Sigma_{k=1}^{L} \widehat{h}_{k, e}\right) \\ -g \nabla \bullet & -f \boldsymbol{k} \times \bullet\end{array}\right]$.

- We adopt the ETD2-Rosenbrock to solve the barotropic equations.

Stage 3 - Update thickness, tracers, density and pressure.

The baroclinic channel test case

- SP1: barotropic mode advances to $\Delta t \rightarrow$ average with data of t_{n};
- SP2: barotropic mode advances to $2 \Delta t \rightarrow$ average with data of t_{n}.

Comparison schemes:

- ETD-SP1 and ETD-SP2 (one ETD stepping with $2 \Delta t$) use uniform time stepping with the barotropic-baroclinic splitting;
- Currently in MPAS-Ocean: SP1 and SP2 (two different time steps with the barotropic-baroclinic splitting), RK4 (uniform time stepping without the barotropic-baroclinic splitting)

Test settings:

- A planar channel with 20 layers, 160 km longitudinal extent and 500 km latitudinal extent;
- A SCVT mesh with a 10 km solution containing 3920 cells, 11840 edges and 7920 vertices;
- 15-day-long simulation by parallel computing with 8 cores.

Comparison in temperature: Days 5, 10, and 15
ETD-SP1 (left) and ETD-SP2 (right) with $\Delta t=60 s$

MPAS-SP1 (left) and MPAS-SP2 (right) with $\Delta t=60 s$ and $\Delta t_{\mathrm{btr}}=4 s$

Comparison in velocity: Days 5, 10, and 15

ETD-SP1 (left) and ETD-SP2 (right) with $\Delta t=60 s$

MPAS-SP1 (left) and MPAS-SP2 (right) with $\Delta t=60 s$ and $\Delta t_{\mathrm{btr}}=4 s$

Benchmark results by RK4

RK4 with $\Delta t=15 \mathrm{~s}$

- Observation: ETD-SP1 subsamples the high frequency barotropic motions just like MPAS-SP1.

Quantitative comparisons

- We run 1 hour simulations with the following time step pairs: ($60 \mathrm{~s}, 16 \mathrm{~s}$), ($30 \mathrm{~s}, 8 \mathrm{~s}$), ($15 \mathrm{~s}, 4 \mathrm{~s}$), ($8 \mathrm{~s}, 2 \mathrm{~s}$), and ($4 \mathrm{~s}, 1 \mathrm{~s}$).
- "a vs. b" means the numbers is calculated by $\frac{\|a-b\|_{\infty}}{\|b\|_{\infty}}$.

	ETD-SP1 vs. MPAS-SP1	ETD-SP1 vs. RK4	MPAS-SP1 vs. RK4
60 s	$4.27 \mathrm{E}-05$	0.0244	0.0245
30 s	$1.95 \mathrm{E}-05$	0.0245	0.0245
15 s	$1.20 \mathrm{E}-05$	0.0242	0.0242
8s	$6.41 \mathrm{E}-06$	0.0247	0.0247
4 s	$2.64 \mathrm{E}-06$	0.0251	0.0251
	ETD-SP2 vs. MPAS-SP2	ETD-SP2 vs. RK4	MPAS-SP2 vs. RK4
60 s	0.0010	0.0190	0.0184
30 s	0.0012	0.0171	0.0162
15s	0.0011	0.0137	0.0128
8s	0.0010	0.0106	0.0097
4 s	0.0008	0.0074	0.0066

- Question: are ETD-SP2 and MPAS-SP2 second-order accurate in time theoretically?

Ongoing work

- Design and implement higher-order accurate parallel ETD coupled schemes for ocean dynamics;
- Implement the parallel ETD approach for tracer equations within the MPAS framework;
- Test high-resolution MPAS-Ocean cases;
- Design higher-order accurate multi-rate explicit time-stepping schemes with theoretical guarantees, which only need small modifications on the current schemes in MPAS;
- Integration of codes into MPAS.

