Parallel Exponential Time Differencing Methods for Ocean Dynamics

Lili Ju, Zhu Wang, Rihui Lan, *University of South Carolina*Wei Leng, *Chinese Academy of Sciences*Max Gunzburger, *Florida State University*

2020 ESMD-E3SM PI Meeting Oct. 26 – Oct. 29, 2020

Outline

- Parallel ETD schemes for rotating SWEs
 - Rotating SWEs and TRiSK scheme
 - Exponential time differencing Runge-Kutta method
 - Parallel global ETD method
- Parallel ETD schemes for primitive equations
 - Primitive equations
 - Barotropic-baroclinic splitting
 - Parallel ETD for the barotropic solve
- Ongoing work

Project information

DOE Award

• "Efficient and Scalable Time-Stepping Algorithms and Reduced-Order Modeling for Ocean System Simulations", Department of Energy Office of Science, 09/01/2019-08/31/2022.

Members

- FSU: Max Gunzburger (Project PI and Institution Lead PI)
- UofSC: Lili Ju (Institutional Lead PI), Zhu Wang, Rihui Lan
- LANL: Philip Jones (Institution Lead PI), Sara Calandrini

Rotating shallow water equations - Single-layer case

Single-layer rotating SWEs in vector-invariant form

(1)
$$\frac{\partial h}{\partial t} + \nabla \cdot (h\mathbf{u}) = 0,$$

(2)
$$\frac{\partial \boldsymbol{u}}{\partial t} + q(h\boldsymbol{u}^{\perp}) + g\nabla(h+b) + \nabla K = \boldsymbol{G}(h,\boldsymbol{u}),$$

- h: the fluid thickness, u: the fluid velocity,
- ullet k: the unit vector pointing in the local vertical direction,
- $\mathbf{u}^{\perp} = \mathbf{k} \times \mathbf{u}$: the velocity rotated through a right angle,
- $\eta = \mathbf{k} \cdot \nabla \times \mathbf{u} + f$: the absolute vorticity and $q = \frac{\eta}{h}$: the fluid potential vorticity,
- $K = |\boldsymbol{u}|^2/2$: the kinetic energy,
- g: gravity, f: Coriolis parameter and b: bottom topography,
- G: additional stress or diffusion terms.

Rotating shallow water equations – Multi-layer case

Assume that there are totally *L* layers of fluids.

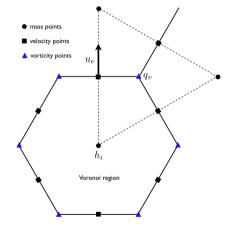
Multi-layer rotating SWEs for the *I*-th layer

(3)
$$\frac{\partial h_l}{\partial t} + \nabla \cdot (h_l \mathbf{u}_l) = 0,$$

(4)
$$\frac{\partial \boldsymbol{u}_l}{\partial t} + q(h_l, \boldsymbol{u}_l)(h_l \boldsymbol{u}_l^{\perp}) + \nabla(K_l + gp_l(\boldsymbol{h})/\rho_l) = \boldsymbol{G}_l(\boldsymbol{h}, \boldsymbol{u}),$$

- The subscript *l* specifies the related layer with $1 \le l \le L$,
- ρ_l : the fluid density of layer l, and $\rho_l < \rho_{l+1}$, for $l = 1, \dots, L-1$,
- $\mathbf{h} = (h_1, h_2, \dots, h_L)^T, \mathbf{u} = (\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_L)^T,$
- Coupling through $\xi_l(\mathbf{h}) = b + \sum_{k=l}^{L} h_k$: the layer coordinates and $p_l(\mathbf{h}) = \rho_l \xi_l(\mathbf{h}) + \sum_{k=1}^{l-1} \rho_k h_k$: the dynamical pressure,
- G_i : additional stress or diffusion terms, e.g., wind stress or bottom friction.

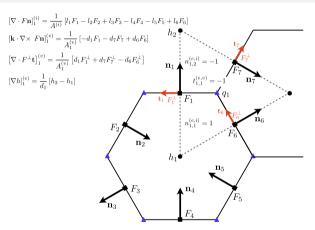
TRISK scheme in MPAS-Ocean



- C-grid staggering in space
- Primal mesh: a Voronoi tessellation
- Dual mesh: its associated Delaunay triangulation
- Duality and orthogonality
- h_i : the mean thickness over primal cell P_i
- u_e: the component of the velocity vector in the direction normal to primal edges
- q_v : the mean vorticity over dual cell D_v
- Finite volume discretization

[Thuburn, Ringler, Skamarock and Klemp, *JCP*, 2009; Ringler, Thuburn, Klemp and Skamarock, *JCP*, 2010]

Discrete div, grad and curl operators



Exponential time differencing

System of ODEs resulting from spatial discretization:

$$\partial_t \mathbf{W} = \mathbf{F}(\mathbf{W}).$$

- Exponential time differencing (ETD) at each time step interval $[t_n, t_{n+1}]$:
 - Split the forcing term into a linear part and a remainder part:

(6)
$$\partial_t \mathbf{W} = \mathbf{J}_n \mathbf{W}(t) + \mathbf{R}_n (\mathbf{W}(t)),$$

where $\mathbf{J}_n = \frac{\partial \mathbf{F}}{\partial \mathbf{W}}(\mathbf{W}_n)$ is the Jacobian matrix evaluated at \mathbf{W}_n and $\mathbf{R}_n = \mathbf{F}(\mathbf{W}) - \mathbf{J}_n \mathbf{W}$ is the remainder.

Use the variation of constants formula:

(7)
$$\mathbf{W}_{n+1} = e^{\Delta t \mathbf{J}_n} \mathbf{W}_n + e^{\Delta t \mathbf{J}_n} \int_0^{\Delta t} e^{(\Delta t - \tau) \mathbf{J}_n} \mathbf{R}_n (\mathbf{W}(t_n + \tau)) d\tau,$$

where the time step size $\Delta t = t_{n+1} - t_n$.

ETD-RK schemes

The exponential Rosenbrock-Euler (ETD-Rosenbrock):

$$\mathbf{w}_{n,1} = \mathbf{W}_n + \Delta t \varphi_1(\Delta t \mathbf{J}_n) \mathbf{F}(\mathbf{W}_n)$$

A two-stage second-order exponential Heun method:

$$\begin{cases} \mathbf{w}_{n,1} = \mathbf{W}_n, \\ \mathbf{w}_{n,2} = \mathbf{W}_n + \Delta t \varphi_1(\Delta t \mathbf{J}_n) \mathbf{F}(\mathbf{W}_n), \\ \mathbf{W}_{n+1} = \mathbf{W}_n + \Delta t \varphi_1(\Delta t \mathbf{J}_n) \mathbf{F}(\mathbf{W}_n) + \Delta t \varphi_2(\Delta t \mathbf{J}_n) \Big(\mathbf{R}_n(\mathbf{w}_{n,2}) - \mathbf{R}_n(\mathbf{W}_n) \Big) \end{cases}$$

where the φ -functions are $\varphi_1(z) = \frac{e^z - 1}{z}$ and $\varphi_2(z) = \frac{e^z - 1 - z}{z^2}$.

- Allow for stable large time stepping with better accuracy than classic implicit schemes.
- Use Krylov subspace method to compute the products of matrix exponential and vector.
- The adaptive Krylov subspace method + Incomplete orthogonalization method (IOM), e.g., phipm/IOM2 [Gaudreault and Pudykiewicz, JCP, 2016].

Algebraic parallelization of ETDs

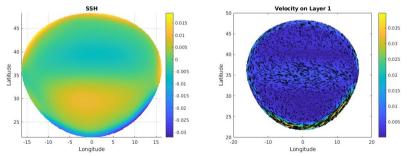
- The standard data-parallel is taken: each vector is split across all the processors/cores with corresponding subdomains, and the MPI environment is used for communications and performing the matrix exponential-vector product operations.
- Three types of ETD methods with the same second order accuracy are considered, for time stepping in the rotating shallow water equations: the ETD2-wave, the B-ETD2wave [Pieper, Sockwell and Gunzburger, JCP, 2020], and the ETD-Rosenbrock.
 - The first two (use skew-Lanczos iteration in Krylov subspace method) rely on a Hamiltonian form
 of the equations and the assumption of zero reference state of the SWEs during simulations;
 - The third (use Arnoldi iteration in Krylov subspace method) is numerically much more stable for general cases without these assumptions.
- We use the "Trilinos" Epetra package as the base for our parallel implementation within the MPAS framework.

A technique for ETD-Rosenbrock

- In ETD-Rosenbrock, we split the Jacobian matrix into two parts for the multi-layer SWE model.
- The first part is layer-independent without the pressure term, so that we can compute the sub-Jacobian matrix on each layer independently; during the Arnoldi-process, we combine the sub-Jacobian matrix with its own layer data.
- The remaining Jacobian matrix only has the pressure part, which gathers all layers' thickness.
- In order to reduce its communication among all the calling processors/cores during the Arnoldi process, we first take the gradient operation locally on each layer, then combine all the resulting vectors.
- Update the Jacobian every 20 time steps.

The three-layer SOMA test: zero initial velocity

- 3 SCVT meshes with different resolutions
 - 16 km: 22,007 cells, 66,560 edges and 44,554 vertices;
 - 8 km: 88,056 cells, 265,245 edges and 177,190 vertices;
 - 4 km: 352,256 cells, 1,058,922 edges and 706,667 vertices.
- To measure the parallel efficiency, we define $E_p = \frac{r \cdot T_r}{p \cdot T_p}$, where T_r is the CPU time when the referential r processors are used, T_p is the running time for p processors.



Parallel performance

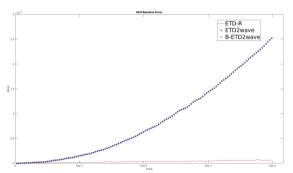
 Run a 1-day-long simulation on the NERSC Cori system: the time step size Δt = 107s and the maximum number of Krylov vectors M = 45.

Cores	ETD-Ro	senbrock	ETD2wave		B-ETD2wave			
	Time	Efficiency	Time	Efficiency	Time	Efficiency		
16 km								
8	194.64	-	76.64	-	27.99	-		
16	100.14	92%	43.11	89%	17.87	78%		
32	84.82	58%	27.22	70%	12.56	56%		
64	35.71	68%	16.10	70%	8.17	43%		
8 km								
8	855.73	-	470.61	-	140.25	-		
16	482.32	89%	281.73	84%	78.26	90%		
32	343.71	62%	216.39	54%	51.67	68%		
64	173.84	62%	93.15	63%	26.47	66%		
128	92.2	58%	33.67	87%	14.5	60%		
4 km								
16	2316.33	-	1414.57	-	528.83	-		
32	1657.91	70%	1069.01	66%	364.62	73%		
64	737.64	79%	478.49	74%	157.13	84%		
128	369.09	78%	221.02	80%	53.99	122%		

13 / 27

The three-layer SOMA test: nonzero initial velocity

- ETD-Rosenberg provides the smallest approximation error, while the other two methods have approximation errors growing with time.
- Both ETD2wave and B-ETD2wave assume a zero reference velocity during the simulation in order to simplify the Jacobian matrix in the Hamiltonian fashion and utilize its skew-symmetry, which does not hold in this test case.



Time evolution of relative errors in fluid height in 4 days

Primitive equations

The equations for momentum, thickness, tracer, and state.

Primitive equations for z-level ocean motion

(8)
$$\begin{cases} \frac{\partial \mathbf{u}}{\partial t} + \eta \mathbf{k} \times \mathbf{u} + \omega \frac{\partial \mathbf{u}}{\partial z} = -\frac{1}{\rho_0} \nabla p - \frac{\rho g}{\rho_0} \nabla z^{\text{mid}} - \nabla K + \mathbf{D}_h^u + \mathbf{D}_v^u + \mathcal{F}^u, \\ \frac{\partial h}{\partial t} + \nabla \cdot (h \overline{\mathbf{u}}^z) = 0, \\ \frac{\partial}{\partial t} h \overline{\varphi}^z + \nabla \cdot (h \overline{\varphi} \overline{\mathbf{u}}^z) = \mathbf{D}_h^{\varphi} + \mathbf{D}_v^{\varphi} + \mathcal{F}^{\varphi}, \\ \rho = f_{\text{eos}}(\Theta, S, p), \end{cases}$$

Due to the well-posedness, (8) also needs the hydrostatic condition:

(9)
$$p(x,y,z) = p^{s}(x,y) + \int_{z}^{z^{s}} \rho g dz'.$$

Primitive equations

Variables definitions

- u: horizontal velocity; h: layer thickness; Θ: potential temperature; S: salinity;
- φ : generic tracer, it can be Θ or S;
- p: pressure; p^s: surface pressure;
- z^{mid} : z-location of middle of layer; z^s : z-location of sea surface;
- D_h^u , D_v^u : momentum diffusion terms for horizontal and vertical directions;
- D_h^{φ} , D_v^{φ} : tracer diffusion terms for horizontal and vertical directions;
- Operator $\overline{(\cdot)}^z$: vertical average over the layer;
- ω : relative vorticity, $\omega = \mathbf{k} \cdot (\nabla \times \mathbf{u})$;
- η : absolution vorticity, $\eta = \omega + f$, where f is the Coriolis parameter;
- $\mathcal{F}^u, \mathcal{F}^{\varphi}$: momentum/tracer forcing.

TRiSK scheme

Layered system

Decompose the space vertically into *L* layers, and on Layer *l*:

(10)
$$\frac{\partial h_{l}}{\partial t} + \nabla \cdot (\widehat{h}_{l,e} u_{l}) + \frac{\partial}{\partial z} (h_{l} \omega_{l}) = 0,$$

$$\frac{\partial \boldsymbol{u}_{l}}{\partial t} + \frac{1}{2} \nabla |\boldsymbol{u}_{l}|^{2} + (\boldsymbol{k} \cdot \nabla \times \boldsymbol{u}_{l}) \boldsymbol{u}_{l}^{\perp} + f \boldsymbol{u}_{l}^{\perp} + \omega_{l,e} \frac{\partial \boldsymbol{u}_{l}}{\partial z}$$

$$= -\frac{1}{\rho_{0}} \nabla p_{l} + \nu_{h} \nabla^{2} \boldsymbol{u}_{l} + \frac{\partial}{\partial z} (\nu_{v} \frac{\partial \boldsymbol{u}_{l}}{\partial z}),$$

$$\frac{\partial h_{l} \varphi_{l}}{\partial t} + \nabla \cdot (\widehat{h}_{l,e} \varphi_{l,e} \boldsymbol{u}_{l}) + \frac{\partial}{\partial z} (h_{l} \varphi_{l} \omega_{l}) = \nabla \cdot (\widehat{h}_{l,e} \kappa_{h} \nabla \varphi_{l})$$

$$+ h_{l} \frac{\partial}{\partial z} (\kappa_{v} \frac{\partial \varphi_{l}}{\partial z}).$$
(12)

Barotropic mode

- Barotropic mode is to model the rapid external gravity waves;
- Barotropic velocity \overline{u} is defined as the mass-weighted vertical average:

$$\overline{\boldsymbol{u}} = \sum_{k=1}^{L} \widehat{h}_{k,e} \boldsymbol{u}_{k} / \sum_{k=1}^{L} \widehat{h}_{k,e}$$

- The perturbation of the sea surface height (SSH) $\zeta = h_1 \Delta z_1$, where Δz_1 is the referential top layer thickness;
- Averaging (10)-(11) yields the barotropic thickness and momentum equations

(13)
$$\frac{\partial \zeta}{\partial t} + \nabla \cdot (\overline{\boldsymbol{u}} \sum_{k=1}^{L} \widehat{\boldsymbol{h}}_{k,e}) = 0,$$

(14)
$$\frac{\partial \overline{\boldsymbol{u}}}{\partial t} + f \overline{\boldsymbol{u}}^{\perp} = -g \nabla \zeta + \overline{\boldsymbol{G}},$$

where the barotropic force \overline{G} includes all the other terms in the barotropic equation.

2020 ESMD-E3SM, 10/28/2020

Baroclinic mode

- Baroclinic mode is the remaining motions including the advective motions and internal waves;
- The baroclinic velocity u'_l is defined as

$$u'_l = u_l - \overline{u}, \ l = 1, \ldots, L.$$

Subtracting (14) from (11) yields the baroclinic momentum equation

(15)
$$\frac{\partial \boldsymbol{u}_{l}^{\prime}}{\partial t} + \frac{1}{2} \nabla |\boldsymbol{u}_{l}|^{2} + (\boldsymbol{k} \cdot \nabla \times \boldsymbol{u}_{l}) \boldsymbol{u}_{l}^{\perp} + f \boldsymbol{u}_{l}^{\prime \perp} + \omega_{l} \frac{\partial \boldsymbol{u}_{l}}{\partial z} \\ = g \nabla \zeta - \frac{1}{\rho_{0}} \nabla \rho_{l} + \nu_{h} \nabla^{2} \boldsymbol{u}_{l} + \frac{\partial}{\partial z} \left(\nu_{v} \frac{\partial \boldsymbol{u}_{l}}{\partial z} \right) - \overline{\boldsymbol{G}}.$$

Two-level approach with ETD for the barotropic solve

Two-level coupling approach

Solve the primitive equations with *large globally uniform time steps* based on the two-level coupling framework, which contains three stages at each iterative step:

- Stage 1: Advance the baroclinic velocity explicitly;
- Stage 2: Compute the barotropic velocity by ETD method;
- Stage 3: Update thickness, tracers, density and pressure explicitly.

Stage 1 – Solve (15) for $u'_{l,n+1}$:

ullet Firstly, ignore $\overline{\textbf{G}}$ and predict the baroclinic velocity by forword-Euler scheme:

(16)
$$\tilde{\boldsymbol{u}}_{l,n+1}' = \boldsymbol{u}_{l,n}' + \Delta t \left(-f \boldsymbol{u}_{l,n}^{\perp} + \boldsymbol{T}^{u} + g \nabla \zeta_{n} \right).$$

• Secondly, compute $\overline{\mathbf{G}}$:

(17)
$$\overline{\mathbf{G}} = \frac{1}{\Delta t} \sum_{k=1}^{L} \widehat{h}_{k,e} \widetilde{\mathbf{u}}'_{k,n+1} / \Sigma_{k=1}^{L} \widehat{h}_{k,e}.$$

• Lastly, correct the baroclinic velocity $m{u}_{l,n+1}' = \tilde{m{u}}_{l,n+1}' - \Delta t \overline{m{G}}$

Two-level approach with ETD for the barotropic mode (Contd.)

Stage 2 – Solve (13)-(14) for $\overline{\boldsymbol{u}}$:

• Rewrite (13)-(14) as a system,

$$\frac{\partial \mathbf{v}}{\partial t} = -\mathbf{F}(\mathbf{v}) + \mathbf{b},$$

where
$${m v} = (\zeta, \overline{{m u}})^{\sf T}$$
, $F({m v}) = \left(
abla \cdot (\overline{{m u}} \Sigma_{k=1}^L \widehat{h}_{k,e}), f \overline{{m u}}^\perp + g
abla \zeta \right)^{\sf T}$, and ${m b} = \left(0, \overline{{m G}} \right)^{\sf T}$.

The solution to Eq. (18) is

(19)
$$\mathbf{v}(t_{n+1}) = e^{\Delta t J_n} \mathbf{v}(t_n) + \int_0^{\Delta t} e^{(\Delta t - \tau) J_n} \mathbf{b} d\tau,$$

where
$$J_n = -DF(\mathbf{v}_n) = \begin{bmatrix} -\nabla \cdot (\overline{\mathbf{u}} \bullet) & -\nabla \cdot \left(\bullet \Sigma_{k=1}^L \widehat{h}_{k,e} \right) \\ -g \nabla \bullet & -f \mathbf{k} \times \bullet \end{bmatrix}$$
.

We adopt the ETD-Rosenbrock to solve the barotropic equations.

Stage 3 – Update thickness, tracers, density and pressure.

2020 ESMD-E3SM, 10/28/2020

The baroclinic channel test case

- SP1: barotropic mode advances to Δt -> average with data of t_n ;
- SP2: barotropic mode advances to $2\Delta t \rightarrow$ average with data of t_n .

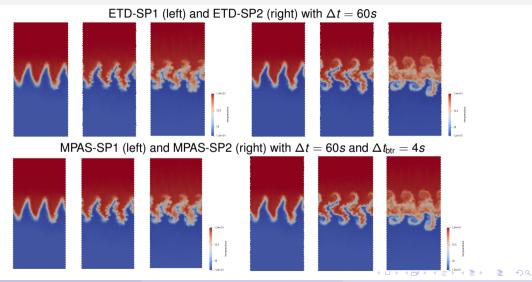
Comparison schemes:

- ETD-SP1 and ETD-SP2 (one ETD stepping with $2\Delta t$) use uniform time stepping with the barotropic-baroclinic splitting;
- Currently in MPAS-Ocean: SP1 and SP2 (two different time steps with the barotropic-baroclinic splitting), RK4 (uniform time stepping without the barotropic-baroclinic splitting)

Test settings:

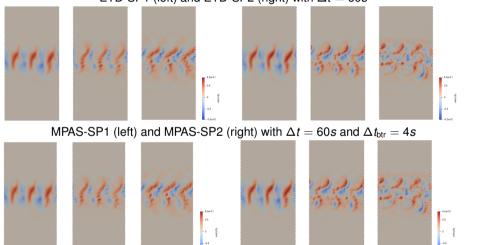
- A planar channel with 20 layers, 160 km longitudinal extent and 500 km latitudinal extent;
- A SCVT mesh with a 10 km solution containing 3920 cells, 11840 edges and 7920 vertices;
- 15-day-long simulation by parallel computing with 8 cores.

Comparison in temperature: Days 5, 10, and 15

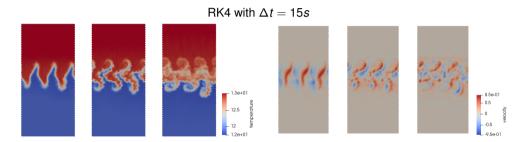


Comparison in velocity: Days 5, 10, and 15

ETD-SP1 (left) and ETD-SP2 (right) with $\Delta t = 60s$



Benchmark results by RK4



Observation: ETD-SP1 subsamples the high frequency barotropic motions just like MPAS-SP1.

2020 ESMD-E3SM, 10/28/2020

Quantitative comparisons

- We run 1 hour simulations with the following time step pairs: (60s, 16s), (30s, 8s), (15s, 4s), (8s,2s), and (4s, 1s).
- ullet "a vs. b" means the numbers is calculated by $\frac{\|a-b\|_\infty}{\|b\|_\infty}$.

	ETD-SP1 vs. MPAS-SP1	ETD-SP1 vs. RK4	MPAS-SP1 vs. RK4
60s	4.27E-05	0.0244	0.0245
30s	1.95E-05	0.0245	0.0245
15s	1.20E-05	0.0242	0.0242
8s	6.41E-06	0.0247	0.0247
4s	2.64E-06	0.0251	0.0251
	ETD-SP2 vs. MPAS-SP2	ETD-SP2 vs. RK4	MPAS-SP2 vs. RK4
60s	0.0010	0.0190	0.0184
30s	0.0012	0.0171	0.0162
15s	0.0011	0.0137	0.0128
8s	0.0010	0.0106	0.0097
4s	0.0008	0.0074	0.0066

• Question: are ETD-SP2 and MPAS-SP2 second-order accurate in time theoretically?

Ongoing work

- Design and implement higher-order accurate parallel ETD coupled schemes for ocean dynamics;
- Implement the parallel ETD approach for tracer equations within the MPAS framework;
- Test high-resolution MPAS-Ocean cases;
- Design higher-order accurate multi-rate explicit time-stepping schemes with theoretical guarantees, which only need small modifications on the current schemes in MPAS;
- Integration of codes into MPAS.