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ICoM focuses on key processes and uncertainties 

Our long-term vision is to deliver a robust predictive understanding 
of coastal evolution that accounts for the complex, multiscale interactions 
among physical, biological, and human systems
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Mid-Atlantic 
Study Region

• Exposed to many different 
stresses and extremes

• Coastal modeling integrated 
into E3SM development 

• Global-to-coastal regional 
mesh refinement

60km

30km
2km
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Accounting for complex, multiscale interactions 
among physical, biological, and human systems

ICoM’s cross-cutting 
research tasks 
leverage and inform 
activities in each of 
the programmatic 
research areas 



Extending E3SM to improve the representation of 
human-land-river-ocean interactions

Earth System Model Development 
(ESMD) Program Area

ESMD PI

Task Leads

Zeli Tan Tian Zhou Gautam Bisht

Elizabeth Hunke
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… and
numerical experiments
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Land-River-Ocean Coupling

E3SM v1: One-way transport of water
E3SM v2*: Heat & sediment transport in MOSART

MOSART MPAS-O MOSART MPAS-O

E3SM v3/v4: Two-way transport of water, heat, sediment, 
and biogeochemistry

ELM MPAS-O

E3SM v1 and v2*: Time invariant land/ocean fraction 
with no coupling between land and ocean components 

ELM MPAS-O

E3SM v3/v4: Dynamic land/ocean fraction with two-way 
exchange of water, heat, and biogeochemistry

Periodically 
Flooded 
Zone

ELM MOSART

E3SM v3/v4: Floodplain inundation will alter hydrologic, 
thermal, and ecological processes in ELM

ELM MOSART

E3SM v2*: Floodplain inundation estimated by MOSART 
E3SM v1: One-way transport of water

ICoM proposed developmentsOngoing E3SM developments

Gautam Bisht
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Land-River Coupling

Model configuration

• Resolution: 0.5°×0.5°
• COMPSET: IELM (ELM+MOSART)
• QIAN atmospheric forcing
• Time period: 1951-1970

§ First 15 years:  “spin up”
§ Last 5 years:  comparison

§ Configurations
§ Land-river one-way coupled
§ Land-river two-way coupled

Max_daily_runoff 𝐭𝐰𝐨$𝐰𝐚𝐲
Max_daily_runoff 𝐨𝐧𝐞$𝐰𝐚𝐲

Compared to one-way coupled model, in the two-way coupled model:
• 87% cells show a change in maximum peak annual runoff or fraction of inundated land grid cell   
• 13% cells have an increase of peak annual runoff at least 5%
• 2% cells have a decrease of peak annual runoff at least 5%

Gautam Bisht

Poster: Land river two-way coupling development in E3SM (Xu, PS2-Land_River_&_Energy)
Poster: MOSART-Urban:  a semi-distributed regional urban flood modeling framework (Li, PS2) 
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Overcoming land-river-ocean coupling challenges
E3SM vs ICoM coupling (numerical methods)

In contrast to E3SM v1, ICoM places the ocean/land/river models onto a common
‘unified’ discretisation + mesh.

E3SM v1:

Land Ocean

Di�culties at component boundaries:
• Flux coupling requires interpolation

! conservation challenges.

• Model-components cannot ‘coexist’
per grid-cell ! ocean cannot flood
land, etc.

• One-way coupling ! ocean cannot
flux ‘up’ rivers, etc.

ICoM v0:

Land Ocean

Direct one-to-one coupling possible:
• Fluxes between components over

common cell edges ! no
interpolation.

• Model-components can ‘stack’ in
mesh cells ! dynamic flooding, etc.

• New model-dev for dynamic two-way
coupling needed.

Two-way ocean/land/river coupling — Darren Engwirda 2/4 – github.com/dengwirda

Darren EngwirdaPoster: 'Unified' ocean/land/river modelling using compatible unstructured meshes (PS1-Ocean_Coastal)



Flow Routing on an unstructured mesh
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The performance of watershed delineation is subject to the spatial 
resolution of underlying Digital Elevation Model (DEM). Therefore, 
a “stream burning” capability was added to the HexWatershed to 
maintain flow direction even at coarse spatial resolutions.

A hybrid breaching-
filling algorithm is 
used minimize the 
modification to DEM.

Resolution: 5km

Provide support for 
MPAS mesh and VTK 
visualization.

Zeli Tan

Poster: A hexagonal 
mesh-based routing 
method for land 
surface and 
hydrological models 
(Liao, PS2-Land_ 
River_&_Energy)



Water and sediment discharge on 
an unstructured mesh
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Evaporation

Melt

Sublimation

Throughfall

Infiltration
Surface 

runoff

Evaporation

Transpiration

Precipitation
Land model (ELM)

Aquifer recharge

Water table

Soil

Saturated
fraction

Water Management Model (WM)

Water demand
Reservoir operations

ELM-MOSART-WM

Local water 
extraction

Reservoir 
operation

Socioeconomic Model 
(GCAM)

River Model (MOSART)

Simulated river flow and fluxes of the 
Susquehanna watershed using the ELM-
MOSART-WM framework – now configured 
on an unstructured mesh

Li et al., 2013, 2015; Voisin et al., 2013a, b; Li et al., in review

Zeli Tan

Poster:  Simulating river processes in a coupled 
Earth system (Zhou, PS2-Land_River_&_Energy)
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Estuary Dynamics:
Global Tidal Modeling in E3SM

• Eight tidal constituents are now in MPAS-Ocean: 

M2, S2, N2, K2, K1, O1, Q1 and P1 

• We are now making three important changes to MPAS-
Ocean to improve the accuracy of the tides: 

• self-attraction and loading (SAL)
• refined bottom drag
• topographic wave drag

• There are two phases of tidal development in MPAS: 
• short-term (months-long) barotropic simulations
• fully coupled climatic baroclinic simulations in E3SM, 

including sea ice, atmospheric and land coupling

• Simulating tides on a range of meshes ranging from 1-
10km for the barotropic model to 14-60km for regionally-
and bathymetrically-refined meshes
Talk by Brian Arbic and Joannes Westerink, Breakout D4S2-BR#4 

Thursday,1:05 pm ET

Delaware Bay

Example of the M2 Tide in MPAS-Ocean

Andrew Roberts, Brian Arbic, Kristin Barton, Stephen Brus, Giacomo Capodaglio, Nairita Pal, Mark Petersen, Joannes Westerink, Damrongsak Wirasae
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Estuary 
Dynamics: 
Salinity

We must correctly model the 
balance between tidal forcing and 
river discharge to accurately 
capture the salinity front
• Current work: Implementing 

General Ocean Turbulence 
Model (GOTM) in MPAS-Ocean 

• Future work: Realistic scenario 
in the Delaware Basin with tides 
and river forcing

Single column simulation of GOTM in MPAS-O showing 
analytical solution compared with 2 turbulence closures 
(ε and ⍵) along with a constant viscosity simulation (vt).

LeAnn Conlon, Qing Li

Horizontal

Vertical

River inflow

Ocean side River side

Tidal flow

Sa
lin

ity
 (p

su
)

Test configuration

Poster: Implementation of turbulence and sediment transport 
models in MPAS-Ocean (Cao & Li, PS1-Ocean_Coastal)



Estuary Dynamics:  Sediment Transport
• Sediment transport affects

§ estuarine turbidity
§ phytoplankton productivity
§ nutrient cycling

• Current work: advection and 
diffusion of sediment in an 
idealized case of MPAS-O 
(based on Warner et al. 2008)

• Future work: erosion and 
deposition, changing 
coastline morphology, etc.

Warner et al. 2008 Development of a three-dimensional, 
regional, coupled wave, current, and sediment-transport model. 
Computers & Geosciences 34 (2008) 1284–1306

Erosion: sediment is eroded from surface; layer 
disappears if a specified amount is removed

Deposition: Create new layer if deposition is 
greater than specified amount.

Vertical structure of bed model
(Warner et al. 2008)

Poster: Implementation of turbulence and 
sediment transport models in MPAS-Ocean 
(Cao & Li, PS1-Ocean_Coastal)

LeAnn Conlon, Zhendong Cao

Single column 
simulation forced by a 
constant pressure 
gradient, balanced by 
bottom drag



Estuary Dynamics:
Local time-stepping for fast and efficient multi-
resolution simulation of global to coastal ocean

Red: low resolution cells.
Advance with coarse time-step.

Yellow: interface layer 2 cells. 
Advance with coarse time-step.

Pink: interface layer 1 cells.
Advance with coarse time-step, 
interpolate to fine time-step.

Blue: high resolution cells.
Advance with fine time-step.  

Local time stepping scheme
1. Predict interface: advance the 

solution in pink and yellow 
cells with the coarse time-
step, then interpolate to 
intermediate time steps in 
pink cells.

2. Advance coarse and fine 
solution on the red and blue 
cells.

3. Correct interface: update the 
solution in pink and yellow 
cells using the coarse time-
step.

�t/M

�t

M = 5

Δt is the coarse 
time-step.
Δt/M is the fine 
time-step.

Progress to date
The local time stepping scheme has been 
implemented and tested in the shallow 
water core of MPAS.  The number of 
interface layers is extensible.

Next steps 
• Obtain quantitative results for the CPU 

time reduction from using a coarse time-
step in the low resolution region

• Integrate the algorithm within the MPAS 
ocean core

Reference: Conservative explicit local time-stepping 
schemes for the shallow water equations, Hoang et 
al., J. Comp. Phys. 2019.

Mark Petersen, Giacomo Capodaglio
Poster: Local time stepping schemes for global to coastal 
simulations in MPAS-Ocean (Capodaglio, PS1-Ocean_Coastal)
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Numerical experiment plans
Stand-alone simulations to address ESMD questions covering two five-year time periods
Coupled simulations will run at low resolution globally (30 to 60km) with enhanced 
resolution in US coastal and mid-Atlantic region (1 to 10km). Simulations will cover the two 
five-year time periods and a century-long simulation.

NERSC ERCAP proposal includes 
both Stand-alone and Coupled 
simulations: 

• Global tidal modeling
• River flow and BGC fluxes modeling
• River-land coupling simulations
• River-Ocean coupling simulations
• Land-River coupling simulations

NERSC computing resources requested:
7M hours + 7T storage (Land/River)
41.25M hours + 156T storage (Ocean)

Tian Zhou



Cross-cutting hypoxia modeling collaboration

Hypoxia modeling partners

Virginia Institute of Marine Science
Marjy Friedrichs
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• Compare ICoM’s terrestrial runoff and ocean boundary 
conditions to those of ChesROMS-ECB for the 
Chesapeake and Delaware estuaries

§ Terrestrial runoff:  water, sediment, carbon, nutrients
§ Ocean:  tides, salinity, sea level

• Force ChesROMS-ECB with ICoM boundary conditions 
in historical and future conditions 

§ How do the frequency and intensity of hypoxia in the two 
estuaries respond to changes in climate, coastal development 
and land use?

• Analyze simulations of ICoM’s hypoxia models to 
understand when/where/why their skills differ 

Rutgers University
John Wilkin

Pennsylvania State University
Raymond G. Najjar

Zeli Tan, Elizabeth Hunke

Cross-cutting atmosphere-ocean coupled system talk:  
Creation of an SST variability metric for E3SM 
(LeAnn Conlon, Water Cycle Breakout #1, Thursday 11:20 am ET)



Thank you

Planned Outcomes:
• Land-river-ocean coupling with resolved estuaries in E3SM, allowing simulation of flows, 

fluxes, and coupled processes related to water transport at the terrestrial aquatic interface 
• Multi-decadal simulation of coupled coastal climate change hazards in E3SM 
• Understanding drivers, sensitivities, and feedbacks of flooding, nutrient, and sediment 

transport within an integrated coastal climate model

Extending the Energy Exascale Earth System Model (E3SM) 
to better resolve human-land-river-ocean interactions 

and corresponding fluxes


