
ORNL is managed by UT-Battelle, LLC
for the US Department of Energy

GPU Kernel Performance
Deep Dive

Youngsung Kim and Sarat Sreepathi

Oct. 29, 2020

2020 ESMD-E3SM PI Meeting

22 Open slide master to edit

The Key Activities in Performance Optimizations

“Why is this slow(fast)?” “I know how to fix this”

Static & Dynamic Analyses Modifications

33 Open slide master to edit

The Key Activities in Performance Optimizations

“Why is this slow(fast)?” “I know how to fix this”

Static & Dynamic Analyses Modifications

• H/W architecture
• Interactions between H/W and S/W
• Profiling tools, compiling tools

• Algorithms and domain knowledge
• Interactions between S/W and H/W
• Compiling tools, testing

(Example)

Analysis : too high L1 cache misses Modification : Let’s try tiling technique

44 Open slide master to edit

Performance Optimization Setup

● Target Application: SAM++
○ A GPU port in C++ of System for Atmospheric Modeling (SAM)

using a GPU porting framework, YAKL
○ Solve a 2-D or 3-D CRM(Cloud Resolving Model)
○ More computationally expensive than traditional code
○ 409 columns on a GPU

● Test System
○ H/W: Oak Ridge National Lab, OLCF Summit

Nvidia Voltas, 80 SMs/GPU, 16GiB HBM,
○ S/W: gcc/6.4.0 cmake/3.17.3 cuda/11.0.2 netcdf/4.6.2

● GPU Performance Profilers
○ Nsight-systems: System level kernel launch analysis
○ Nsight-compute: Kernel level performance analysis

55 Open slide master to edit

Performance Analysis - Overview

● Code size : 9,758 code lines without comments
● Profiling limited to first 1,500 launches of cpp2d

100%0% 68.8%29.5%

33.81%18.2%

Memory Throughput

Cycle-weighted average

Streaming Multiprocessor Usage

100%0%

66 Open slide master to edit

Performance Analysis – Computations

of

 k
er

ne
l

Elapsed time (msec) GFLOPS/sec

36 16 6 0 6 10

1202

161 63

[0
.0

1,
 0

.8
4]

(0
.8

4,
 1

.6
8]

(1
.6

8,
 2

.5
1]

(2
.5

1,
 3

.3
4]

(3
.3

4,
 4

.1
8]

(4
.1

8,
 5

.0
1]

(5
.0

1,
 5

.8
4]

(5
.8

4,
 6

.6
8]

(6
.6

8,
 7

.5
1]

Elapsed time of SAM++ GPU Kernels

21 19 6 5 5 0 6

1307

131

[0
.0

0,
 7

.3
1]

(7
.3

1,
 1

4.
61

]

(1
4.

61
, 2

1.
92

]

(2
1.

92
, 2

9.
23

]

(2
9.

23
, 3

6.
54

]

(3
6.

54
, 4

3.
84

]

(4
3.

84
, 5

1.
15

]

(5
1.

15
, 5

8.
46

]

(5
8.

46
, 6

5.
77

]

GFLOPS/sec of SAM++ GPU Kernels

How long do the kernels run? How fast(FLOPs) do the kernels run?

77 Open slide master to edit

Performance Analysis – Computations (FLOPS)

of

 k
er

ne
l

Elapsed time (msec) GFLOPS/sec

36 16 6 0 6 10

1202

161 63

[0
.0

1,
 0

.8
4]

(0
.8

4,
 1

.6
8]

(1
.6

8,
 2

.5
1]

(2
.5

1,
 3

.3
4]

(3
.3

4,
 4

.1
8]

(4
.1

8,
 5

.0
1]

(5
.0

1,
 5

.8
4]

(5
.8

4,
 6

.6
8]

(6
.6

8,
 7

.5
1]

Elapsed time of SAM++ GPU Kernels

21 19 6 5 5 0 6

1307

131

[0
.0

0,
 7

.3
1]

(7
.3

1,
 1

4.
61

]

(1
4.

61
, 2

1.
92

]

(2
1.

92
, 2

9.
23

]

(2
9.

23
, 3

6.
54

]

(3
6.

54
, 4

3.
84

]

(4
3.

84
, 5

1.
15

]

(5
1.

15
, 5

8.
46

]

(5
8.

46
, 6

5.
77

]

GFLOPS/sec of SAM++ GPU Kernels

How long do the kernels run? How fast(FLOPs) do the kernels run?

Most kernels run short
(83%, < 1 msec)

On average, 6.44 GFLOPS
(0.05% of the peak perf.)

88 Open slide master to edit

Performance Analysis - Key findings

Register usage close
to maximum limit

255 used out of 256

Register Data
movement and

integer instructions
are dominant

MOV : 67%
IADD3 : 13%
DADD : 1%

Total: 268,574,707
instructions

Usage of registers
are increased rapidly

on accessing
elements in array

If (qn(k,j,i,icrm)…)

Strongly indicates that “register spill” problem exists due to array index
calculations

Using slower device global memory instead of faster registers

99 Open slide master to edit

Code modifications based on the key findings

● YAKL is a framework used in SAM++ for GPU porting.
Array index calculations are done inside of YAKL

● The core developer (Matthew Norman) of YAKL
made following modifications

○ switch to unsigned int instead of size_t
○ change the looping strategy to use cheaper integer modulo
○ create a SimpleBounds class that uses fewer registers for

loops

1010 Open slide master to edit

Speed-ups – Computations (FLOPS)

of
 k

er
ne

l l
au

nc
he

s

GFLOPS/sec

17 24 0 10 0

1348

95 6

[0
.0

0,
 8

.2
2]

(8
.2

2,
 1

6.
44

]

(1
6.

44
, 2

4.
66

]

(2
4.

66
, 3

2.
88

]

(3
2.

88
, 4

1.
10

]

(4
1.

10
, 4

9.
32

]

(4
9.

32
, 5

7.
54

]

(5
7.

54
, 6

5.
77

]

GFLOPS/sec of SAM++ GPU Kernels

On average, 6.44 GFLOPS
(0.05% of the peak perf.)

GFLOPS/sec

Before Optimization After Optimization

0

1391

72 16 5 10 1 5
[0

.0
0,

 1
3.

30
]

(1
3.

30
, 2

6.
60

]
(2

6.
60

, 3
9.

89
]

(3
9.

89
, 5

3.
19

]
(5

3.
19

, 6
6.

49
]

(6
6.

49
, 7

9.
79

]
(7

9.
79

, 9
3.

08
]

(9
3.

08
, 1

06
.3

8]

GFLOPS/sec of SAM++ GPU Kernels

On average, 8.65 GFLOPS
(0.06% of the peak perf.)

EX) RRTMGP++
On average, 314.63 GFLOPS
(2.35% of the peak perf.)

1111 Open slide master to edit

Speed-ups

Register usage

255 => 255

Executed
instructions

MOV : 67% => 55%
IADD3 : 13% => 16%

DADD : 1% => 1%
Total 268,574,707 =>

197,559,738(-25%)
instructions

elements in array

If (qn(k,j,i,icrm) +
qp(ind_qp, k…))

Reduced MOV and IADD3 instructions

Total run time: 9.16 sec => 6.18 sec, 1.5X speed-up

1212 Open slide master to edit

The Key Activities in Performance Optimizations -
Revisited

RE-USE of Optimization Techniques

● Profiling techniques
● Opt. Case-studies

Static & Dynamic Analyses Modification

● Modification techniques
● Mod. Case-studies

1313 Open slide master to edit

Scaling Up Performance Optimization

Int
era

cti
ve

 se
arc

h

Ana
lys

is
up

loa
d

Interactive search

Modification upload

Analysis output

Optimization output

Static & Dynamic Analyses Modification

Optimization Techniques
Database

1414 Open slide master to edit

Scaling Up Performance Optimization -
Through GPU Kernels

Prof
ile

ou
tpu

t

Sou
rce

 co
de

Doc
um

en
t

Rep
roducib

ilit
y

Source code: before & after

Compiler options, libraries, etc.

Rationales for the changes

Analysis output

Optimization output

Static & Dynamic Analyses Modification

GPU Kernel Performance
Database

Saving data in subfolders Saving data in subfolders

1515 Open slide master to edit

Scaling Up Performance Optimization -
Through GPU Kernels

Sea
rch

by
pro

file
, c

od
e,

co
nfi

gu
rat

ion
, e

tc.

Search by code,

compiler, libraries, etc.

Analysis output

Optimization output

Static & Dynamic Analyses Modification

GPU Kernel Performance
Database

1616 Open slide master to edit

Conclusions

● GPU Kernel performances of SAM++ are analyzed
using Nvidia Nsight Profilers

● From the analyses, ”register spill” issue is identified,
and YAKL is updated to reduce register usage

● Performance analysis requires different skill set from
actual modification, but they are inter-dependent

● Future: prototype “GPU Kernel Performance
Database” for scaling up performance optimization

1717 Open slide master to edit

Q&A

THANK YOU

kimy@ornl.gov

1818 Open slide master to edit

Speed ups - GPU Usage

100%0%

68.31%31.8%

30.07%17.3%

Memory
Usage

Streaming
Multiprocessor

Usage

100%0%

68.8%29.5%

33.81%18.2%

Memory
Usage

Streaming
Multiprocessor

Usage

Cycle-weighted average

1919 Open slide master to edit

Analysis Upload Subfolders

Folder name Content

Goals GFLOPS, Elapsed time, Memory Usage, I/O, …

Setup Reproducibility: script, code, system, compiler, …

Measurement performance metrics

Analysis A tightly related subset of performance metrics with
causal relationship to the goal(s)

Conclusions root cause of the performance

Verification check if this analysis is useful

2020 Open slide master to edit

Modification Upload Subfolders

Folder name Content

Analysis Corresponding performance analysis

Setup Reproducibility: code, system, compiler, …

Changes Code, compiler, library: before & after

Reasoning Reasons of the changes

Speed-up Performance change

2121 Open slide master to edit

Original

● ==155521== NVPROF is profiling process 155521,
command: ./cpp2d

● File : input.nc
● Samples: 409
● crm_nx : 32
● crm_ny : 1
● crm_dx : 1000.0000000000000
● crm_dt : 5.0000000000000000
● plev : 30
● Reading the data
● Running the CRM
● Elapsed Time: 9.1604433019999991
● Writing output data
● ==155521== Profiling application: ./cpp2d

2222 Open slide master to edit

Optimized

● ==57325== NVPROF is profiling process 57325,
command: ./cpp2d

● File : input.nc
● Samples: 409
● crm_nx : 32
● crm_ny : 1
● crm_dx : 1000.0000000000000
● crm_dt : 5.0000000000000000
● plev : 30
● Reading the data
● Running the CRM
● Elapsed Time: 6.1785642139999997
● Writing output data
● ==57325== Profiling application: ./cpp2d

