
Oliver Fuhrer, DOE ESMD/E3SM PI Meeting, 10/28/20

Learning how to forget
How high-level abstractions can help
bridge the gap between productivity and
performance.

Who is Vulcan?

Vulcan was founded by Paul and Jody Allen, and is their
estate’s company and engine for philanthropic efforts.

Multiple tech4good projects focusing on
oceans, climate, conservation, and communities.

Vulcan Climate Modeling (VCM)

Pilot started June 2019, co-led by Chris Bretherton and
Oliver Fuhrer

Main partners: NOAA GFDL in Princeton, CSCS and
MeteoSwiss in Switzerland

The Semantic Gap

Machine Learning Scientist

Algorithm:
Convolution, Filter shape: (5,5,6), Stride=1, Padding=’SAME’
Max pooling (2x2), Window shape:(2,2), Stride=2, Padding=’Same’
ReLU
Convolution, Filter shape:(5,5,16), Stride=1, Padding=’SAME’
Max pooling (2x2), Window shape:(2,2), Stride=2, Padding=’Same’
ReLU
Fully Connected Layer (128)
ReLU
Fully Connected Layer (10)
Softmax

Implementation (Python + Tensorflow):

Climate Scientist

Implementation (Fortran + OpenACC):

Summary

1. Domain-specific languages have the potential for achieving
a good balance between performance, portability and
productivity (at the price of generality).

2. Optimizing for data-movement on different hardware
targets can require a higher-level of abstraction in our
codes.

3. No turn-key solutions, but we can build on existing tools and
libraries.

Experience with COSMO (since 2010)

350 kLOC of F90 + MPI + NEC directives
(“optimized code”)

Domain-specific
library

(“performance portable”,
re-usable)

High-level C++
implementation

Separation of concerns

C++ / DSL rewrite
Fortran +

directives

(Fuhrer et al. 2014; Gysi et al. 2016)

Near-global Simulations
(Fuhrer et al. 2018; Schulthess et al. 2019)

Feasible to port & run an uncoupled
climate model on a modern, GPU-
accelerated supercomputer.

In the linear scaling regime, GPU
simulation is 3x faster and 7x more
energy efficient.

GPUs need at least 128 x 128 x 80
to perform well. CPUs scale better.

Fast enough (0.25 SYPD) for AMIP-
type simulations at 2 km grid
spacing.

Strong Scalability (20 km, 4 km, 2 km, 1 km)

1

1 km

2 km

4 km

20 km

Fortran + X is worse!

Directives are not comments, they
are code! (But some developers
might ignore them.)

We’re adding hardware specific code
to an already large code base!

We cannot achieve performance
portability by adding more detail.

Templated C++ is a mixed bag

• Increasing the level of abstraction
improved the performance as well as the
maintainability of the code base.

• Investments into software can pay off
more than investments into hardware.

• A higher-level of abstraction opens up
entirely new avenues to inspect, analyze
and instrument the code.

• Using a C++ library (e.g. GridTools C++)
which abstracts kernels and schedule does
not help with aggressive data-flow
optimizations.

• Heaviliy templated C++ is a programming
model that is not readily adopted by
domain scientists.

• Other gotchas (e.g. boilerplate, debugging)

See also Schaer et al. 2019 MWR, Clement et al. 2019 SuperFri, Thaler et al. 2019,
Schulthess et al. 2019, Clement et al. 2018, Fuhrer et al. 2018, Lapillonne et al. 2017,
Leutwyler et al. 2016, Gysi et al. 2015, Cumming et al. 2014, Fuhrer et al. 2014,
Lapillionne et al. 2014

Taxonomy of Abstractions

Domain-specific
languages & abstractions

Kernels & Schedule

HPC programming
languages & libraries

(dragons live here…)

Le
ve

l o
f a

bs
tr

ac
tio

n
<latexit sha1_base64="+z+5xZVtcyE8Te6jrMfpNX9uM08=">AAAB8XicbVBNS8NAEJ34WetX1aOXxSJ4KklR9Fj04rGC/cA2lsl20y7dbMLuRiih/8KLB0W8+m+8+W/ctjlo64OBx3szzMwLEsG1cd1vZ2V1bX1js7BV3N7Z3dsvHRw2dZwqyho0FrFqB6iZ4JI1DDeCtRPFMAoEawWjm6nfemJK81jem3HC/AgHkoecorHSQ1diIPCxStJeqexW3BnIMvFyUoYc9V7pq9uPaRoxaahArTuemxg/Q2U4FWxS7KaaJUhHOGAdSyVGTPvZ7OIJObVKn4SxsiUNmam/JzKMtB5Hge2M0Az1ojcV//M6qQmv/IzLJDVM0vmiMBXExGT6PulzxagRY0uQKm5vJXSICqmxIRVtCN7iy8ukWa14FxX37rxcu87jKMAxnMAZeHAJNbiFOjSAgoRneIU3RzsvzrvzMW9dcfKZI/gD5/MH26qQYQ==</latexit>

r2u

<latexit sha1_base64="0ZnNkessujZfp4t5xfa3uRp03tg=">AAACFXicbVDLSsNAFJ34rPUVdelmsAhCbUmKosuiLlxWsA9oYphMJ+3QySTMTMQS8hNu/BU3LhRxK7jzb5y0XWjrgQuHc+7l3nv8mFGpLOvbWFhcWl5ZLawV1zc2t7bNnd2WjBKBSRNHLBIdH0nCKCdNRRUjnVgQFPqMtP3hZe6374mQNOK3ahQTN0R9TgOKkdKSZx47gUA4TbyUlu0MVmANJh6FZZgrFTvLUueKMIXgw10t88ySVbXGgPPEnpISmKLhmV9OL8JJSLjCDEnZta1YuSkSimJGsqKTSBIjPER90tWUo5BINx1/lcFDrfRgEAldXMGx+nsiRaGUo9DXnSFSAznr5eJ/XjdRwbmbUh4ninA8WRQkDKoI5hHBHhUEKzbSBGFB9a0QD5COSekgizoEe/bledKqVe3TqnVzUqpfTOMogH1wAI6ADc5AHVyDBmgCDB7BM3gFb8aT8WK8Gx+T1gVjOrMH/sD4/AGzpp1I</latexit>

ui+1 � 2ui + ui�1

�x2

on domain:
u[i+1] – 2 u[i] + u[i-1]

for i = 1, ni
for j = 1, nj
for k = 1, nk
u[i+1,j,k] – 2 u[i,j,k] + u[i-1,j,k]

!$acc parallel present(u)
!$acc loop vector collapse(3)
for i = 1, ni
for j = 1, nj
for k = 1, nk
u[i+1,j,k] – 2 u[i,j,k] + u[i-1,j,k]

Ko
kk

os
RA

JA

C+
+,

 F
or

tr
an

M
PI

, O
pe

nM
P

O
pe

nA
CC

Gr
id

To
ol

s C
++

Th
is

 ta
lk

!

Horizontal Diffusion

@�

@t
= �↵r4�

= �↵

✓
@Fx

@x
+

@Fy

@y

◆

Fi =
@L

@x

Fy =
@L

@y

L = �� =
@2�

@x2
+

@2�

@y2

@�

@t
= �↵r4�

= �↵

✓
@Fx

@x
+

@Fy

@y

◆

Fi =
@L

@x

Fy =
@L

@y

L = �� =
@2�

@x2
+

@2�

@y2@�

@t
= �↵r4�

= �↵

✓
@Fx

@x
+

@Fy

@y

◆

Fi =
@L

@x

Fy =
@L

@y

L = �� =
@2�

@x2
+

@2�

@y2

x

Data-flow graph

in

wgt

out

lap

fli flj

2 inputs
1 output
3 temporaries
(each 11 MB in memory)

(adapted from Gysi et al, 2015)

Already 10 reads/writes in a very simple operator!

Data-locality optimization

in

wgt

out

lap

fli flj

2 inputs
1 output
(each 11 MB in memory)

3 temporaries
(each 64 KB in memory)

L2 cache

``

Impact of hardware

in

wgt

out

lap

fli flj

Smaller
L2 cache

???

???

???

• Optimal partitioning of graph and code generation
are challenging tasks

• ”Optimal” code (inlining, loop-fusion, reordering,
over-computation, …) does not retain domain logic
(operators), changes with hardware target and can
be hard to read.

Loss of domain logic

hordiff u,v-update div u,v-update & div

So what can we do?

DSL in Python

• A domain-specific language (DSL) is a
programming language with concepts
tailored to a specific application domain

• A compiler is responsible for transforming
the high-level specification into code that
runs on HPC cluster (code generation)

• By sacrificing generality, we can improve
productivity, performance, and portability.

• User can specify execution backend
(e.g. Python, optimized CPU, optimized
GPU, …)

• Generate readable, efficient code by
leveraging existing efforts (e.g. GridTools
C++, Kokkos, Raja)

User code (Python)

DSL compiler

C++
compiler

CUDA
compiler

…

Checkers
Optimizers

Code generators

DSL frontend

Python GT C++, Kokkos, Raja, …

Why Python?

Large and growing community in the
atmospheric and data science.

Mature integration with IDEs, huge
ecosystem of packages, integration with
visualization, interactive workflows using
Jupyter notebooks on HPC clusters, …

GT4Py ()

• Joint open-source development with
CSCS and MeteoSwiss.

• Features
• No explicit parallelism or

optimization

• No loops

• No explicit data-storage layout

• Overhead-free functions
(operators)

import gt4py.gtscript as gtscript

@gtscript.function
def advection_x(dx, u, phi):

adv_phi_x = u[0, 0, 0] / (60. * dx) * (

+ 45. * (phi[1, 0, 0] - phi[-1, 0, 0])
- 9. * (phi[2, 0, 0] - phi[-2, 0, 0])
+ (phi[3, 0, 0] - phi[-3, 0, 0])

) – abs(u[0, 0, 0]) / (60. * dx) * (
+ (phi[3, 0, 0] + phi[-3, 0, 0])

- 6. * (phi[2, 0, 0] + phi[-2, 0, 0])
+ 15. * (phi[1, 0, 0] + phi[-1, 0, 0])
- 20. * phi[0, 0, 0])

return adv_phi_x

@gtscript.stencil(backend=“numpy”)
def advection(

in_u: gtscript.Field[np.float64],
out_adv: gtscript.Field[np.float64],
*,

dx: float
):

with computation(PARALLEL), interval(...):
out_adv = advection_x(dx=dx, u=in_u, phi=u)

advection.pyhttps://github.com/GridTools/gt4py

https://github.com/GridTools/gt4py

Demonstrate on FV3GFS

Apply the GT4Py DSL to port the FV3GFS
model to Python.

Conduct a km-scale global simulation to
provide a dataset to the the machine
learning colleagues.

Current status
• Dynamical core (FV3) rewritten and

validated
• 3 physical parametrizations ported, 1

on-going, 2 outstanding

Dynamical Core ()

FV3 (Fortran)
Temperature anomaly [K]

Time = 6 days

FV3 (Python)
Temperature anomaly [K]

Time = 6 days

• Dynamical core rewritten and
validated using Python, x86 CPU and
NVIDIA GPU backends.

• Parallelized using MPI from Python

• Simultaneous development of DSL
frontend and compiler (e.g. corners &
edges).

• Next: Refactoring for new DSL
features. Performance improvements.

https://github.com/VulcanClimateModeling/fv3core

https://github.com/VulcanClimateModeling/fv3core

Performance (preliminary!)
2.4 sOriginal (Fortran)

< 10-2 ms

55 ms

~ 2 ms

CPU (x86) GPU (CUDA)

~ 8 ms

7.5 s

~ 2 ms

1.9 s

Python (numpy)

Physical parameterization
from FV3GFS ported by
bachelor student as a
course project

Performance results on a
single node of Piz Daint
supercomputer

CPU = Intel Xeon E5-2690
v3 (12 cores, @ 2.6 GHz)

GPU = NVIDIA Tesla P100

Python wrapped FV3GFS

• Allows to run FV3GFS in parallel from Python

• Simply replace the dynamical core with our DSL
version for validation.

• Many more use-cases

• Integration with Python code (e.g. ML
training, visualization, …)

• Easy access to model for students
• Rapid prototyping of new developments
• …

import os
from mpi4py import MPI
import fv3gfs

if __name__ == '__main__':
comm = MPI.COMM_WORLD
rank = comm.Get_rank()

fv3gfs.initialize()

for i in range(fv3gfs.get_step_count()):
fv3gfs.step_dynamics()
fv3gfs.step_physics()
fv3gfs.save_restart()

fv3gfs.cleanup()

basic_model.py

Summary

1. Domain-specific languages have the potential for achieving
a good balance between performance, portability and
productivity (at the price of generality).

2. Optimizing for data-movement on different hardware
targets can require a higher-level of abstraction in our
codes.

3. No turn-key solutions, but we can build on existing tools and
libraries.

©2018 Vulcan Inc. All rights reserved. The information herein is for informational purposes only and represents the current view of Vulcan Inc. as of the date of this
presentation. VULCAN INC MAKES NO WARRANTIES, EXPRESS, IMPLIED, OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

