





Focus was on (1) characterizing polar climate in E3SM (both hemispheres) and (2) identifying important biases and improvements between v1 and v2

#### We had three formal presentations (and discussion) around these topics:

- Initial assessment of the v2 E3SM atmosphere over the S. polar region, including with atmos. RRM (*Zhang et al.*)
- An overview of the polar climate in E3SM v1 and v2 (*Roberts et al.*)
- Initial assessment of E3SM skill at simulating the drivers of Greenland ice sheet (GIS) surface melt (*Wang et al.*)

- v2 alpha versions produce S. polar climatology similar to v1
- most (but not all) biases over S. polar region are sensitive to atmos. resolution and tuning
  - stubborn 2 m air temperature bias suggests possible structural deficiency in model physics (for this region)
- S. polar atmos. RRM mesh mostly reproduces S. polar region features seen in global high-res. simulations
  - recent atmos. tuning from v2 WC finalization improves S. polar region climatology in both uniform low-res. and RRM configs.
  - conclusions around RRM are currently from atmos. only simulations (further analysis from coupled simulations needed)

- several bugs and previously uncertain physics have been fixed / reduced from v1 to v2 (e.g., ocean advection bug that fixed spurious noise in sea ice melt terms)
- several significant polar climate biases have been reduced from v1 to v2:
  - consistent land-and-sea ice snow radiative transfer
  - improved snow morphology on sea ice
  - consistent sea ice and ocean basal temperature between models
- large Arctic sea ice bias remains in v2
  - possibly surface radiation bias in the high north?
- sea ice & ocean coupling improvements planned for v3, v4 should result in further significant improvements (e.g., consistent ice-ocean vector coupling and embedding)

- from observations (PROMICE AWS), sensible and short-wave heating (SH & SW) dominate sub-seasonal GIS melt
- both are enhanced during Katabatic wind events (clear sky = increased SW; wind = increased turbulent heat flux)
- spatial patterns of SH & SW in E3SM are similar to ERA5
- E3SM sub-seasonal variability in SW heating is too large:
  - snow/ice albedo biases
  - humidity biases
- first bias can likely be addressed through new snowpack model improvements (UCI efforts)

15 mins at the end of the session discussing:

- phase 3 Cryosphere science, in anticipation of phase 3 proposal, and v3 and v4 model features and configurations
- Cryosphere campaign actionable metrics (revisiting / refining these and progress towards them)

Detailed notes from breakout session are here:

https://acme-climate.atlassian.net/wiki/spaces/ECG/pages/1945470626/10-29-2020+E3SM+All-Hands+meeting+Cryosphere+Breakout