A modified TRiSK scheme to address instabilities found in MPAS-Ocean

ESMD Meeting, October 262020

Sara Calandrini

Joint work with Mark Petersen and Darren Engwirda

A modified TRiSK scheme to address instabilities found in MPAS-Ocean

In MPAS-O the horizontal discretization used is the TRiSK scheme, a C-grid, finite-volume method applied to Spherical Centroidal Voronoi Tessellations (SCVTs) where the mass, tracers, pressure and kinetic energy are defined at centers of the convex polygons and the normal component of velocity is located at cell edges.

A modified TRiSK scheme to address instabilities found in MPAS-Ocean

TRiSK has many desirable mimetic properties, it shows second order accuracy in the mean error norm (L2) in most shallow water test cases, but it fails to converge in the maximum norm.

Problem: this lack of convergence in the maximun norm can be carried to the 3D model causing potential instabilities.

A modified TRiSK scheme to address instabilities found in MPAS-Ocean

Strategy: based on previous analyses of Peixoto [1], we investigate a modification to the TRiSK scheme which consists of positioning the velocities on midpoints of the edges of the Voronoi cells, instead of the midpoint of the dual triangle edges.

HCt

A modified TRiSK scheme to address instabilities found in MPAS-Ocean

Interpolation of height
On a HCt grid: $h_{e}=\left(h_{i}+h_{j}\right) / 2$ with i and j indexes of the Voronoi cells that share the edge.

On a HCm grid: $h_{e}=\sum_{i} \lambda_{i}\left(x_{e}\right) h_{i}$, with the weights given by $\lambda_{i}=a_{i}\left(x_{e}\right) / A_{k}$ where $a_{i}\left(x_{e}\right)$ is the area of the triangle formed by the two vertices of the triangle opposite to i and the interpolation point for h_{e}, and A_{k} is the area of the triangle T_{k}. This is called a barycentric coordinate interpolation.

A modified TRiSK scheme to address instabilities found in MPAS-Ocean

Kinetic energy

On a HCt grid: $K_{i}=\frac{1}{4 A_{i}} \sum_{e} l_{e} d_{e} u_{e}^{2}$
where e varies within the edges of the Voronoi cell i, A_{i} is the Voronoi cell area and d_{e} and l_{e} are defined as the triangle and Voronoi edge lengths, respectively.

On a HCm grid: $K_{i}=\frac{1}{2} \overrightarrow{u_{i}} \cdot \overrightarrow{u_{i}}$, with $\overrightarrow{u_{i}}=\frac{1}{A_{i}} \sum_{e} n_{e i}\left(\overrightarrow{x_{e}}-\overrightarrow{x_{i}}\right) u_{e} l_{e}$ where x_{e} is the midpoint of the Voronoi cell edge, x_{i} is the center of the Voronoi cell and $n_{e i}$ is a sign correction for the normal component.

Note: The expression for an HCm grid will in general NOT simplify to the energy conserving K_{i} of TRiSK.

A modified TRiSK scheme to address instabilities found in MPAS-Ocean

Potential vorticity

On a $\underline{H C t}$ grid: $h_{v}=\frac{1}{A_{k}} \sum_{i} a_{i v} h_{i}$

On a $\underline{\mathrm{HCm} \text { grid: }} h_{v}=\frac{1}{A_{k}} \sum_{i} b_{i v} h_{i}$

A modified TRiSK scheme to address instabilities found in MPAS-Ocean

Coriolis term

On a $\underline{\text { HCt grid: }} w_{e e,}=\frac{c_{e e^{\prime}} l_{e^{\prime}}}{d_{e}}\left(\frac{1}{2}-\sum_{v} \frac{a_{i v}}{A_{i}}\right) n_{e, i}$
where $a_{i v}$ is the overlapping area between the Voronoi cell and the dual triangular cell, the sum is within the vertices v between edge e and e^{\prime}, and $c_{e e}^{\prime}$ is a sign correction relative to the orientation of the tangent vector at e.

On a $\underset{\overrightarrow{t_{e}}}{\mathrm{HCm} \text { grid: }} w_{e e,}=\frac{1}{2} \frac{l^{\prime}}{A_{i}} n_{e \prime i}\left(\overrightarrow{x_{e \prime}}-\overrightarrow{x_{i}}\right) \cdot \overrightarrow{t_{e}}$
where $\overrightarrow{t_{e}}$ unit vector tangent to the edge e.
Note: on a HCm grid the orthogonality property, $n_{e, i}\left(\overrightarrow{x_{e \prime}}-\overrightarrow{x_{i}}\right)=\left(d_{e}, \overrightarrow{n_{e}}\right) / 2$, holds only approximately, and this may have a (small) impact on energy conservation.

A modified TRiSK scheme to address instabilities found in MPAS-Ocean

Progress made so far

We have implemented the changes to the horizontal divergence (specifically to h_{e}), kinetic energy, potential vorticity (specifically to h_{v}) and Coriolis term. We are now testing the new scheme on shallow water test cases to check that a first order accuracy is met.

Future work

Investigate the performance of this scheme applied to the full 3D ocean model to determine if it provides a good trade off in losing some properties of TRiSK in order to obtain first order accuracy and more stability.

