Overview	TDycore	V&V	TDycore-ELM	Heterogenous computing
000	00000	00	00	0

Development of Terrestrial Dynamical Core for E3SM

Gautam Bisht¹, Jed Brown², Nathan Collier³, Jennifer Fredrick⁴, Glenn Hammond¹, Jeffery Johnson⁵, Satish Karra⁶, Mathew Knepley⁷, Rosie C. Leone⁴, Richard Mills⁸, and Rezgar Shaker²

> ESMD PI Meeting Oct 28, 2020

¹PNNL, ²Univ. Colorado, Boulder, ³ORNL, ⁴SNL, ⁵Cohere LLC, ⁶LANL,

⁷Univ. Buffalo, ⁸ANL

Research funded by U.S. DOE

Scientific Discovery through Advanced Computing

Overview	TDycore	V&V	TDycore-ELM	Heterogenous computing
●00	00000	00	00	0
Shortcomin	gs of biophy	sical proc	esses in ELM	

• ELMv2.0 will neglect lateral transport of soil moisture and subsurface heat

Overview	TDycore	V&V	TDycore-ELM	Heterogenous computing
●00	00000	00	00	O
Shortcomin	gs of biophy	sical proc	esses in ELM	

- ELMv2.0 will neglect lateral transport of soil moisture and subsurface heat
- Lateral redistribution of soil moisture leads to an increase in predicted surface energy fluxes at watershed¹ and continental scales²
- Lateral redistribution of subsurface heat leads to a decrease of spatial variability in soil temperature³

¹Tague and Peng, 2013; ²Maxwell and Condon, 2016; ³Bisht et al., 2018

Overview	TDycore	V&V	TDycore-ELM	Heterogenous computing
●00	00000	00	00	O
Shortcomin	gs of biophy	sical proc	esses in ELM	

- ELMv2.0 will neglect lateral transport of soil moisture and subsurface heat
- Lateral redistribution of soil moisture leads to an increase in predicted surface energy fluxes at watershed¹ and continental scales²
- Lateral redistribution of subsurface heat leads to a decrease of spatial variability in soil temperature³
- Advective heat transport, which will not be modeled in ELMv2.0, may accelerate the rate of permafrost thaw⁴

 $^{^{1}\}text{Tague}$ and Peng, 2013; $^{2}\text{Maxwell}$ and Condon, 2016; $^{3}\text{Bisht}$ et al., 2018 ; $^{4}\text{Kurylyk}$ et al. 2014

000	00000	00	00	0
<u></u>				

Shortcomings of biophysical processes in ELM

- A key biophysical process that has been identified for next-generation LSMs is lateral subsurface flow¹
- Integration of conceptual models for representing a 1D hillslope within a LSM grid cell is underway.

Overview	TDycore	V&V	TDycore-ELM	Heterogenous computing
000	00000	00	00	0

Shortcomings of biophysical processes in ELM

- A key biophysical process that has been identified for next-generation LSMs is lateral subsurface flow¹
- Integration of conceptual models for representing a 1D hillslope within a LSM grid cell is underway.
- Higher horizontal resolution in future ESMs would require explicit representation of subsurface lateral processes.

Overview	TDycore	V&V	TDycore-ELM	Heterogenous computing
00●	00000	00	00	0
-				

• Need to use terrain-following grids

Overview 00●	TDycore 00000	V&V 00	TDycore-ELM 00	$\underset{O}{\text{Heterogenous computing}}$

• Need to use terrain-following grids

Overview 00●	TDycore 00000	V&V 00	TDycore-ELM 00	$\underset{O}{\text{Heterogenous computing}}$

• Need to use terrain-following grids

∆ z [m]

42 [m]

(15 layers)

10²

Overview	TDycore	V&V	TDycore-ELM	Heterogenous computing
000	00000	00	00	0

• Need to use terrain-following grids that are non-orthogonal for which low-order spatial discretization methods may not be accurate

∆ z [m]

Overview	TDycore	V&V	TDycore-ELM	Heterogenous computing
000	00000	00	00	0

- Need to use terrain-following grids that are non-orthogonal for which low-order spatial discretization methods may not be accurate
- Scalable solver for nonlinear parabolic PDE with 10¹⁰ unknowns

Overview	TDycore	V&V	TDycore-ELM	Heterogenous computing
000	00000	00	00	0

- Need to use terrain-following grids that are non-orthogonal for which low-order spatial discretization methods may not be accurate
- Scalable solver for nonlinear parabolic PDE with 10¹⁰ unknowns
- Need to support heterogenous computing architecture

Overview	TDycore	V&V	TDycore-ELM	Heterogenous computing
000	0000	00	00	0
T	. D			
l errestri	ai Dy nami	cal core (I Dycore) libr	arv

- Developed a scalable *library* on top of PETSc framework
- Open-source and open-development
- Core library is written in C with Fortran bindings
- Supports runtime configurability: -tdy_method {wy|mpfao|...}
- Developed a regression testing framework for the TDycore lib
- Includes 13 demo examples and 42 regression tests
- Available at https://github.com/TDycores-Project/TDycore
- Using Travs-CI for regression testing https://travis-ci.org/TDycores-Project/TDycore
- Regression tests cover 85% of the code https://codecov.io/gh/TDycores-Project/TDycore

Overview	TDycore	V&V	TDycore-ELM	Heterogenous computing
000	o●ooo	00	00	O
T 1	1.1.1		1.1	

The coupled thermal-hydrology model

The TDycore will solve 3D transport of water and energy in the subsurface given by:

$$\frac{\partial}{\partial t}(\rho\phi s) = -\nabla \cdot (\rho \mathbf{q}) + Q_w \tag{1}$$

$$\frac{\partial}{\partial t}(\rho\phi sU + (1-\phi)\rho_p C_p T) = -\nabla \cdot (\rho \mathbf{q}H - \kappa \nabla T) + Q_e \qquad (2)$$

where $\mathbf{q} = -rac{k_r k}{\mu} \nabla (P +
ho gz)$

 \sim

Overview	TDycore	V&V	TDycore-ELM	Heterogenous computing
000	o●ooo	00	00	O
T 1	1.1.1		1.1	

The coupled thermal-hydrology model

The TDycore will solve 3D transport of water and energy in the subsurface given by:

$$\frac{\partial}{\partial t}(\rho\phi s) = -\nabla \cdot (\rho \mathbf{q}) + Q_w \tag{1}$$

$$\frac{\partial}{\partial t}(\rho\phi sU + (1-\phi)\rho_p C_p T) = -\nabla \cdot (\rho \mathbf{q}H - \kappa \nabla T) + Q_e \qquad (2)$$

where $\mathbf{q} = -\frac{k_r k}{\mu} \nabla (P + \rho g z)$

0

We are pursuing a two pronged development that is focused on:

 Using spatial discretization methods that accounts for non-orthogonal grids

Overview	TDycore	V&V	TDycore-ELM	Heterogenous computing
000	00000	00	00	0
T 1	1.1.1		1.1	

The coupled thermal-hydrology model

The TDycore will solve 3D transport of water and energy in the subsurface given by:

$$\frac{\partial}{\partial t}(\rho\phi s) = -\nabla \cdot (\rho \mathbf{q}) + Q_w \tag{1}$$

$$\frac{\partial}{\partial t}(\rho\phi sU + (1-\phi)\rho_p C_p T) = -\nabla \cdot (\rho \mathbf{q}H - \kappa \nabla T) + Q_e \qquad (2)$$

where $\mathbf{q} = -rac{k_r k}{\mu} \nabla (P +
ho gz)$

We are pursuing a two pronged development that is focused on:

- Using spatial discretization methods that accounts for non-orthogonal grids
- Using a flexible framework that supports experimenting with different temporal discretization schemes

Overview	TDycore	V&V	TDycore-ELM	Heterogenous computing
000	00000	00	00	0

Supported discretizations

- Spatial discretizations
 - Multi-point flux approximation
 - Mixed Finite Element
- Used Method of Manufactured Solutions for code verification

Temporal discretizations

- Hard-coded backward Euler
- PETSc Time Stepper¹

 $^{1}\mathrm{Contributed}$ a conservative time integration scheme to PETSc.

Overview	TDycore	V&V	TDycore-ELM	Heterogenous computing
000	000●0	00	00	O
TDycore	meshes			

• Support multiple mesh configurations

 Input mesh types: (i) 3D and (ii) surface mesh that can be extruded¹

• A surface mesh with 70×10^6 grid cells is extruded 30 soil layer deep $(= 2.1 \times 10^9$ grid cells)

¹Contributed to PETSc

Overview	TDycore	V&V	TDycore-ELM	Heterogenous computing
000	0000●	00	00	O

TDycore preliminary application

- South Fork Shoshone watershed. WY
- HUC8 watershed with 1685 km²
- Grid cells: 436,320 ۲
- Water table initialized spatially homogeneously at a depth of 25m below to surface
- No flow boundary condition is ۰ applied

Water table depth after 30 days

Overview	TDycore	V&V	TDycore-ELM	Heterogenous computing
000	00000	●○	00	O
		-		

Verification & Validation framework

Developed an automated, python-based framework for V&V testing in the cloud that is code-agnostic

- The object-oriented framework compiles a list of tests to be run by a subset of simulators
- Results are compared among simulators, analytical solutions or empirical datasets
- Documentation is generated in reStructuredText format and compiled to pdf or html using Sphinx

Verification & Validation framework

 Steady-state, 2D saturated flow w/linear pressure gradient BCs and non-uniform block permeability.

Overview	TDycore	V&V	TDycore-ELM	Heterogenous computing
000	00000	00	●○	O
TDycore-El	LM			

- TDycore coupled to ELM through the External Model Interface
- For mapping data between ELM and TDycore, a file format similar to the one use by coupler mapping files is used

Source: Modified from Bisht et al. (2017)

Overview	TDycore	V&V	TDycore-ELM	Heterogenous computing
000	00000	00	●○	O
TDycore-E	LM			

- TDycore coupled to ELM through the External Model Interface
- For mapping data between ELM and TDycore, a file format similar to the one use by coupler mapping files is used
- ParMETIS to partition ELM during the run
- ELM mesh connectivity information is based on MPAS-O format

- A month long simulation with ELM-TDycore is performed for an idealized converging hillslope
 - Terrain-following initial soil moisture redistributes laterally
 - Higher soil moisture at the bottom of the hillslope leads to higher latent heat flux

SPE10: Permeability

- SPE10 problem performance on a node of OLCF Summit using GAMG with Chebyshev + Jacobi smoother.
- **5.9X speedup** observed in KSPSolve() when utilizing the Volta GPUs.

• Can utilize GPUs in PETSc solvers by specifying appropriate types on command line:

Overview	TDycore	V&V	TDycore-ELM	Heterogenous computing
000	00000	00	00	0

Thank you