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Context.



DNNs: Powerful emulators of high-dimensional 
nonlinear functions disrupting industry and science.

Schematic of a simple deep feed-forward Neural Network (DNN)



Deep Learning emulation might allow high 
definition 3D turbulence ahead of schedule!

If the job is hard, e.g. 
simulating the whole 

atmosphere for 
decades...

...satisfying 3D turbulence 
calculations can seem too 

much even for powerful 
computers.



If the job changes to 
making  short 

simulations just for 
training machine 

learning emulators...

...we can do much more justice to 
turbulence physics.

Deep Learning emulation might allow high 
definition 3D turbulence ahead of schedule!



Deep Learning emulation can buy performance portability 
for free and thus access to unbelievable new systems. 

“Summit” at Oak Ridge in Tennessee — 200 petaflops
~ 4,500 NVIDIA Volta V100 GPU nodes

(~ 27,648 research quality GPUs)



2017: Global aquaplanet  
SP testbed

Can 140,000,000 outputs from 
1 year of ~ 10,000 cloud-

resolving models...

Be fit by a deep neural network?

Gentine, Pritchard, Rasp et al., GRL, 2018.

Is deep learning viable for emulating 
SuperParameterization?



Yes, e.g. R2 > 0.7 for mid-tropospheric 
heating by convection and radiation.

Quite possibly!

The “Cloud Brain”

Global aquaplanet testbed

Can 140,000,000 outputs from 
1 year of ~ 10,000 cloud-

resolving models...

Be fit by a deep neural network?

Is deep learning viable for emulating 
SuperParameterization?



Promise: Physically credible behavior in multi-year 
prognostic simulations with NN-emulated convection.

Rasp, Pritchard and Gentine, PNAS, 2018.



Brenowitz and Bretherton, JAMES, 2019.

Promise: NN trained on coarse-grained global aquaplanet 
behaving well 5 days into a prognostic forecast.



Yuval & O’Gorman, Nature Communications, 2020.

Promise: Random-Forest trained carefully via coarse-
graining GCRM aquaplanet slice at equilibrium (prognostic)



Problem 1:  NNs attractive but don’t obey constraints.

Figure courtesy of Tom Beucler, UCI.



Problem 2: Does the idea work beyond aquaplanets?



Problem 3:  Instabilities abound and stable runs are rare.

Figure courtesy of Tom Beucler, UCI

Example of the neural network blowing up in prognostic mode.



ROAD MAP

I. ADDING PHYSICAL CONSTRAINTS

III. REPRODUCING ONLINE STABILITY.

Adapting the Rasp et al. NN to conserve column mass, enthalpy and radiation to precision.  

“FKB” software that is helping probe the link between offline validation skill and online performance.

II. FINDING QUALITY FITS  IN MORE REALISTIC DATA
“SHERPA”: A formal hyperparameter tuning package uncovers skill in a real-geography setting.
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How to physically constrain neural network 
parameterizations?



Option #1: 
Through the loss function:



Option #2: 
Hard constraints in the architecture:

Tom Beucler’s idea: Enforce n constraints within the neural net architecture.
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Beucler, Pritchard et al., 2020 arXiv:1909.00912



Architecture constrained DNNs perform well.

Beucler, Pritchard et al., 2020 arXiv:1909.00912
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Problem 2: Does the idea work beyond aquaplanets?



Han et al., JAMES, 2020.

Han et al. 2020: First real-geography offline fits of a SP-GCM

Success requires “resnet” NN architectures  + vertical convolution + memory back in time.
 

Is NN parameterizability harder than it has appeared?



Revisiting our own (simpler) DNN fits after relaxing  
aquaplanet idealizations

Model version: SPCAM3.0

Dynamical core: Spectral + semi-Lagrangian

Physics columns: ~8k

No geography or land

No seasonality

Weak oceanic diurnal cycles

Zonal symmetry

SPCAM5

Finite-volume, 2-deg

Full seasonality

~14k

Real geography & land

Realistic diurnal convection cycles

Walker cells, asymmetric storm tracks, etc.

Mooers, Pritchard et al., in review (arXiv:2010.12996)



Schematic of the crude NN we will use.

T profile 
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q profile 
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Lessons learned in the real-geography limit.



Competitive skill is possible even with crude DNNs

> 90 % temporal variance of zonal mean heating can be fit most places.

Mooers, Pritchard et al., in review (arXiv:2010.12996)



In-depth, automated hyperparameter tuning matters.

Sherpa: Easy to use semi-automated hyperparameter tuning software

Mooers, Pritchard et al., in review (arXiv:2010.12996)



Least skill where signals decorrelate rapidly 
(e.g. tropical marine boundary layer)

Heating tendency skill at lowest model level

Mooers, Pritchard et al., in review (arXiv:2010.12996)



Synoptic and diurnal harmonics equally emulatable.

Mooers, Pritchard et al., in review (arXiv:2010.12996)



For heating & moistening, excellent diurnal composites.

Mooers, Pritchard et al., in review (arXiv:2010.12996)



For diurnal precipitation, at first a curious conundrum.
Diurnal rainfall:  
Local solar time of max. precipitation  
(where diurnal cycle detectable @ 95%)

Mooers, Pritchard et al., in review (arXiv:2010.12996)



Physical constraints vs intensive hyperparameter tuning 
can have complementary effects.

Diurnal rainfall:  
Local solar time of max. precipitation  
(where diurnal cycle detectable @ 95%)

Mooers, Pritchard et al., in review (arXiv:2010.12996)



Bottom line: SP convection still seems parametrizable with 
NNs locally in time & without learning vertical basis functions.

Han et al. 2020 
(Sophisticated resnet 
including past state & 
vertical convolution)

These results 
(Crude DNN 
using current 

state only)

Biases in the zonal mean heating & moistening rate (offline) 

Mooers, Pritchard et al., in review (arXiv:2010.12996)
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Instability crisis:  minor enhancements of Rasp et al. 2018 
aquaplanet training data have not succeeded prognostically.

More in: Brenowitz, Beucler, Pritchard & Bretherton, JAS, 2020.



Translating NNs

to fortran kernels is hard.

Tuning NNs is painful,

100’s of tests.

Can past successes be 
reproduced with enhanced 

training data?

Are instabilities controllable? 

Does offline NN skill predict 


online coupled performance?

Is machine learning emulation of subgrid cloud physics 
viable for operational climate simulation?

Barriers
?
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“SHERPA”
Reliably autotuning NN parameters “Fortran-Keras Bridge”

Simplifies embedding 
NNs in climate models

New software… ?
Test dozens
of candidate

NNs in
prognostic 

mode.



The Fortran-Keras Bridge (FKB)

Pierre Baldi Jordan Ott

(UCI Computer Science)

Milan Curcic

U. Miami

Ott, Pritchard et al., Scientific Programming, 2020.

https://github.com/scientific-computing/FKB

Takes the pain out of testing / training simple NNs within E3SM



First results from a large ensemble of NN-coupled climate model tests  
(aquaplanet) sampling diverse architectures



Offline fit skill has predictive value & optimizer choice matters.
(32-col SP-aquaplanet)

Ott, Pritchard et al., Scientific Programming, 2020.



Widespread hyperparameter tuning worth it but 
must be paired with widespread prognostic testing.

Ott, Pritchard et al., Scientific Programming, 2020.



Can past successes be 
reproduced with enhanced 

training data?

Are instabilities controllable? 

Does offline NN skill predict 


online coupled performance?

Is machine learning emulation of subgrid cloud physics 
viable for operational climate simulation?

Yes. Formal hyperparameter tuning via 
Sherpa has yielded offline fits in real-

geography mode that look competitive.


Perhaps. A stubborn instability 
when SP-AQUA is retrained on 32-
col CRM data can be avoided with 

formal tuning.


First reproduction of 
Rasp et al. success.


Will Sherpa+FKB prove 
reliable for success in 

prognostic real-geography 
mode?


(stay tuned!)


While many candidate NNs drift to 
unphysical coupled attractors, 

optimal fits are performant




T H A N K S

It is an exciting time for numerical climate 
dynamics!


