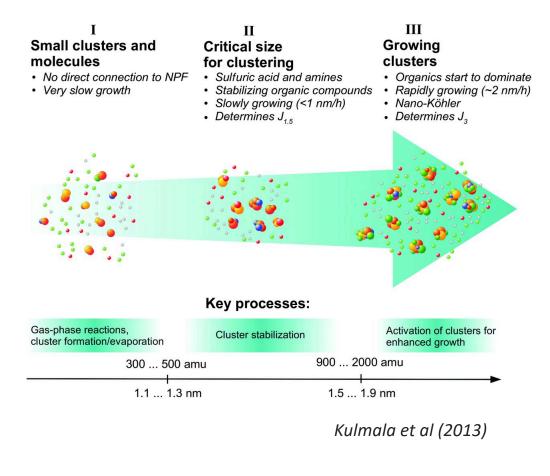


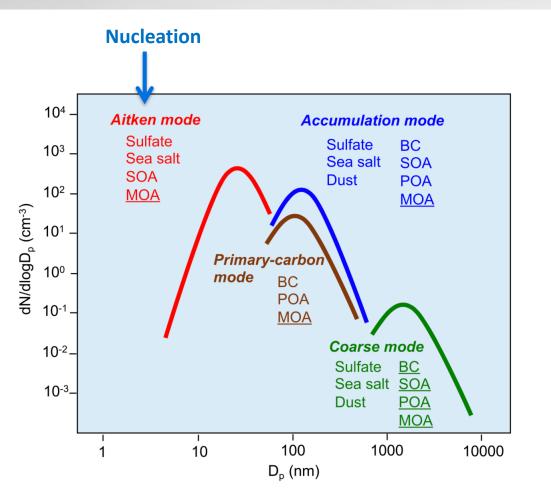
Proudly Operated by Battelle Since 1965

Improving the Representation of Ultra-fine Aerosols in the E3SM Atmosphere Model

Kai Zhang, Jian Sun, Balwinder Singh, Po-Lun Ma, Jerome Fast, Adam Varble, Bin Zhao, Hailong Wang, Guangxing Lin


Pacific Northwest National Laboratory

New particle formation (aerosol nucleation)

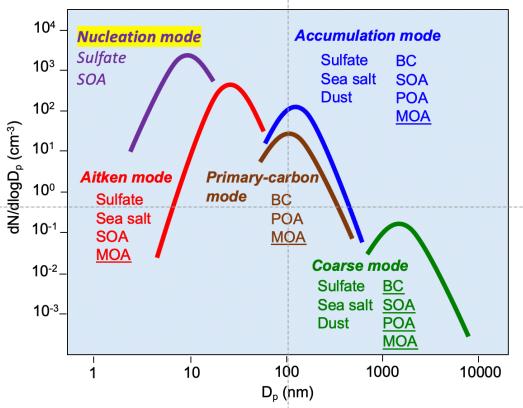


- New particle formation through gas-to-particle conversion
- Increases both aerosol mass and number
- Newly formed particles are hydrophilic, but not effectively scavenged
- Can grow into larger sizes and act as CCN - an important process for aerosol forcing
- More important at cloud-permitting scales (with much stronger updraft)

Aerosol nucleation considered in MAM

- Current MAM doesn't have a nucleation mode
- Nucleation is considered but newly-formed particles will immediately grow into Aitken mode particles.
- Nucleation processes in free troposphere and in near surface layer are considered separately.

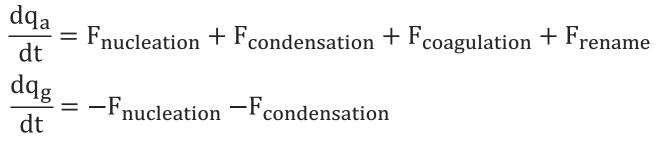
Adapted from Wang et al (2020)



New nucleation mode / MAM5

Mode	Mode width	Diameter range (um)
Nucleation	1.6	<0.0087
Aitken	1.6	0.0087–0.052
Accumulation	1.8	0.0535–0.44
Coarse	1.8	1.0–4.0
Primary Carbon	1.6	0.01-0.1

- Three additional tracers (number and mass): resolved and resolved transport
- Interaction between aerosol microphysics processes (including the impact of SOA condensation in nucleation mode)
- Possible wet removal (only for impaction scavenging)
- Currently no dry removal (deposition/sedimentation)
- No impact on radiation


Pacific Northwest

H₂SO₄ gas

NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

Code verified with the MAM box model

Governing equations

10

10

10

10

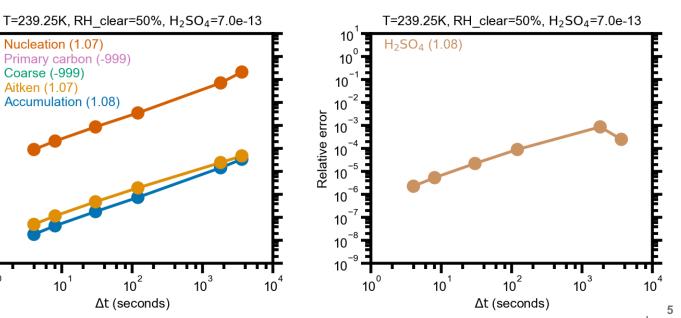
10

10

10

10

10

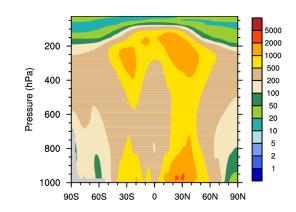

10

10

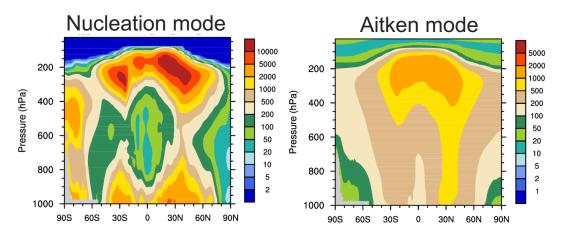
Relative erroi

- 1-hour simulation
- Δt varies from 1s to 3600s.
- Reference solution: $\Delta t = 1s$
- Linear convergence is expected if no clipping or other artificial fixer is applied

Sulfate aerosol mass



Global model results



- Nudged simulation for the year 2016-2018
- Annual mean vertical distribution ultrafine aerosol number is shown
- Near surface, there are less Aitken mode particles in MAM5 compared to MAM4.
- While in the upper troposphere, more Aitken mode particles are formed due to strong condensation.

MAM4 ultrafine aerosol number Aitken mode

MAM5 ultrafine aerosol number

6

- Nucleation mode is added in MAM to better represent ultrafine aerosol particles and their interactions with cloud and precipitation at cloudpermitting scales
- The nucleation mode includes both sulfate and SOA, and the impact of SOA condensation on newly-formed sulfate particles is considered
- MAM5 (MAM4 + nucleation mode) reasonably simulates the global distribution of nucleation mode particles
- See Poster (Tang S. et al.) for model evaluation against ARM observations