
Massively Parallel Ultra-scale E3SM Land
Model Development on Summit

Peter Schwartz, Dali Wang, Fengming Yuan, Peter
Thornton
Marcia Branstetter, Rupesh Shrestha, Shih-Chieh Kao,
Michelle Thornton

Oak Ridge National Laboratory

Target: 1km2 grid resolution over N. America

Annual
Average Tmax

(2019)

~ 22,000,000 gridcells Major efforts: New code and
new data

High-resolution surface weather inputs:

• Updated with new station data for 1980-2019
• Corrected time-of-observation biases in daily temperature
• Corrected temperature sensor biases in SNOTEL data

record
• Applied temporal downscaling based on GSWP3

Computational Platform: GPUs on Summit

Each Summit node has 6 NVIDIA Volta V100
GPUs. We plan to have 1 ELM MPI task per

GPU, so 6 MPI tasks per node

Each GPU has 80+ Streaming
Multiprocessors (SMs) and 16 GB of

shared memory (HBM2)

Our approach is to use the existing “clumps” parallelism in ELM (traditionally
connected to OpenMP), and tie it to the double precision cores on the V100
GPUs via OpenACC, using 2 gridcell per clump.

4,608 nodes, 27,000 NVIDIA Volta GPUs

Parallel Strategy and Data Management

Implementation on Single GPU with Clumps

• Using OpenACC deep copy method to move
entire ELM data structure (all clumps) onto GPU.

• Sequential execution of major science routines in
ELM run step on GPU (6 clump-parallel regions).

• Update CPU on exit from GPU block, to allow I/O
• Using the Functional Unit Testing framework

developed to rapidly prototype the GPU kernel
• Performance tests showed near-ideal scaling of

compute time out to ~20 K clumps per GPU.
• As expected, data transfer time scales with

number of clumps per GPU.

Forcing data region

CPU

Forcing data in CPU

Data update in CPU

Site
ELM

History data region

FUT

GPU

Deepcopy (data and code)

Deepcopy (data)

Data Structure Refactoring
- dealing with limited PGI/OpenACC functions

● Deepcopy Implementation:
○ PGI does not support all all derived types in ELM
○ Use pointer elements— even for types that held

parameter — to ensure data is copied.

● Limited Use of Unstructured Data Regions
● Only at beginning and end of run and history tapes

when needed.

● Memory Requirements:
○ Each Site uses ≈3.2 MB for global variables.
○ OpenACC kernels requires ≈ 9.9 GB of memory
○ Current Limit is ≈2000 sites per GPU on SUMMIT.
○ Refactoring and optimizing local variables

decreases the kernel memory and allows more
sites.

Changing to pointers Example

type, public :: DecompCNParamsType

real(r8), pointer :: cn_s1_cn => null()

real(r8), pointer :: cn_s2_cn => null()

Directive must accompany variable declaration
type(DecompCNParamsType) :: DecompCNParamsInst
!$acc declare create(DecompCNParamsInst)

Subroutine Refactoring
- dealing with massive ELM functions

● Simplify complex subroutines
○ Removed custom timing, error checking, and I/O

functions.
○ Use local pointer for certain derived data types
○ Break Class methods into several separate

subroutines

● Automatic Batch Conversion of ELM
Subroutines with Python Scripts

● Recursively add acc directives
● Identify class methods to streamline
● Add new modules/developments

● Increase Data Parallelism
● Introduced clump parallelism to certain functions:

history and accumulation buffer update.

Class Method example
!call col_nf%Summary(bounds, num_soilc, filter_soilc)
call colnf_summary_acc(col_nf,bounds, num_soilc,
filter_soilc, dt)

Array slicing (error due to implicit intrinsic)
!call c2g(bounds, col_cf%nee(begc:endc), &
! lnd2atm_vars%nee_grc(begg:endg), &
! c2l_scale_type= unity, l2g_scale_type=unity)
call c2g(bounds, nee(begc:endc) , nee_grc(begg:endg) , &

c2l_scale_type= unity, l2g_scale_type=unity)

Adopted Performance Optimization Techniques
● Reduce / remove dynamic memory allocation
● Replace local arrays with scalars if possible

(highest priority)
● Be cautious on memory allocation using filters,

instead of entire clump.
● Increase data parallelism for routines that are

most compute intensive (e.g., history buffer is
parallelized in across fields as well as gridcells)

● Increase task parallelism and data locality for
routines with hundreds of global memory
accesses.

● Fine tuning of OpenACC parameters: gangs,
registers, etc..

Timings (in seconds) for 3 sections of ELM
code before and after first optimizations.

Current Efforts on Forcing Data Preparation

+
0.5oX0.5o Three-Hourly GSWP3

ELM Atmospheric Forcing

ELM

High Spatial Res.
Vegetation Maps

1kmX1km Sub-daily Atm.
Forcing

High Spatial Res. Soil (e.g. texture,
SOM) Maps

1kmX1km Daily DAYMET Forcing
(https://daymet.ornl.gov)

Data Staging via Coupler-bypass

• Generate standalone GSWP3-Daymet4 dataset for North America
o 1014 tiles (2.5 TB)
o 23 - 38k gridcells per tile
o 2.1-3.5 GB per tile

• Modify the OLMT coupler-bypass
o Remove the built-in data generation function

• Modify the lnd_import_export function
o Read in the GSWPS-Daymet4 dataset directly

Estimation on Computing Resource and Timing
• GPU memory constraints (2000 gridcells/GPU or 12K gridcells/node)
• 22M gridcells in NA requires 1800 Summit nodes (out of 4800)
• Goal: 4000 gridcell per GPU device

• Basic reference time (simulation over one tile with 5 cluster nodes)
o 700-year simulation takes 2 weeks

o Current GPU timing is 125 seconds per model day / 64 minutes per month
• Goals: 1) 4 minutes per month (16x) / 700-year simulation in 24 days

2) 1 minutes per month (extra 4x) / 700-year simulation in 6 days

