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Target: 1km2 grid resolution over N. America
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~ 22,000,000 gridcells Major efforts: New code and 
new data 

High-resolution surface weather inputs:

• Updated with new station data for 1980-2019
• Corrected time-of-observation biases in daily temperature
• Corrected temperature sensor biases in SNOTEL data 

record
• Applied temporal downscaling based on GSWP3



Computational Platform: GPUs on Summit

Each Summit node has 6 NVIDIA Volta V100 
GPUs. We plan to have 1 ELM MPI task per 

GPU, so 6 MPI tasks per node

Each GPU has 80+ Streaming 
Multiprocessors (SMs) and 16 GB of 

shared memory (HBM2)

Our approach is to use the existing “clumps” parallelism in ELM (traditionally 
connected to OpenMP), and tie it to the double precision cores on the V100 
GPUs via OpenACC, using 2 gridcell per clump.

4,608 nodes, 27,000 NVIDIA Volta GPUs



Parallel Strategy and Data Management



Implementation on Single GPU with Clumps

• Using OpenACC deep copy method to move 
entire ELM data structure (all clumps) onto GPU.

• Sequential execution of major science routines in 
ELM run step on GPU (6 clump-parallel regions).

• Update CPU on exit from GPU block, to allow I/O
• Using the Functional Unit Testing framework 

developed to rapidly prototype the GPU kernel
• Performance tests showed near-ideal scaling of 

compute time out to ~20 K clumps per GPU.
• As expected, data transfer time scales with 

number of clumps per GPU.
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Data Structure Refactoring
- dealing with limited PGI/OpenACC functions

● Deepcopy Implementation:
○ PGI does not support all all derived types in ELM
○ Use pointer elements— even for types that held 

parameter — to ensure data is copied.

● Limited Use of Unstructured Data Regions 
● Only at beginning and end of run and history tapes 

when needed.

● Memory Requirements:
○ Each Site uses  ≈3.2 MB for global variables.
○ OpenACC kernels requires ≈ 9.9 GB of memory
○ Current Limit is ≈2000 sites per GPU on SUMMIT.
○ Refactoring and optimizing local variables 

decreases the kernel memory and allows more 
sites.

Changing to pointers Example

type, public :: DecompCNParamsType

real(r8), pointer :: cn_s1_cn => null()

real(r8), pointer :: cn_s2_cn => null()

Directive must accompany variable declaration
type(DecompCNParamsType) :: DecompCNParamsInst
!$acc declare create(DecompCNParamsInst)



Subroutine Refactoring
- dealing with massive ELM functions

● Simplify complex subroutines
○ Removed custom timing, error checking, and I/O 

functions.
○ Use local pointer for certain derived data types
○ Break Class methods into several separate 

subroutines

● Automatic Batch Conversion of ELM 
Subroutines with Python Scripts

● Recursively add acc directives 
● Identify class methods to streamline 
● Add new modules/developments

● Increase Data Parallelism 
● Introduced clump parallelism to certain functions: 

history and accumulation buffer update.

Class Method example
!call col_nf%Summary(bounds, num_soilc, filter_soilc)
call colnf_summary_acc(col_nf,bounds, num_soilc, 
filter_soilc, dt)

Array slicing (error due to implicit intrinsic)
!call c2g(bounds,  col_cf%nee(begc:endc), &
! lnd2atm_vars%nee_grc(begg:endg), &
! c2l_scale_type= unity, l2g_scale_type=unity)
call c2g(bounds, nee(begc:endc) , nee_grc(begg:endg) , &

c2l_scale_type= unity, l2g_scale_type=unity)



Adopted Performance Optimization Techniques
● Reduce / remove dynamic memory allocation
● Replace local arrays with scalars if possible 

(highest priority)
● Be cautious on memory allocation using filters, 

instead of entire clump.
● Increase data parallelism for routines that are 

most compute intensive (e.g., history buffer is 
parallelized in across fields as well as gridcells)

● Increase task parallelism and data locality for 
routines with hundreds of global memory 
accesses.

● Fine tuning of OpenACC parameters:  gangs, 
registers, etc.. 

Timings (in seconds) for 3 sections of ELM 
code before and after first optimizations.



Current Efforts on Forcing Data Preparation
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Data Staging via Coupler-bypass

• Generate standalone GSWP3-Daymet4 dataset for North America
o 1014 tiles (2.5 TB)
o 23 - 38k gridcells per tile
o 2.1-3.5 GB per tile

• Modify the OLMT coupler-bypass 
o Remove the built-in data generation function

• Modify the lnd_import_export function
o Read in the GSWPS-Daymet4 dataset directly



Estimation on Computing Resource and Timing
• GPU memory constraints  (2000 gridcells/GPU or 12K gridcells/node)
• 22M gridcells in NA requires 1800 Summit nodes (out of 4800)
• Goal: 4000 gridcell per GPU device

• Basic reference time (simulation over one tile with 5 cluster nodes)
o 700-year simulation takes 2 weeks

o Current GPU timing is 125 seconds per model day / 64 minutes per month
• Goals: 1) 4 minutes per month (16x) / 700-year simulation in  24 days

2) 1 minutes per month (extra 4x) / 700-year simulation in  6 days


