Regionally refined model updates for the E3SMv2 atmosphere model

Qi Tang¹, Jean-Christophe Golaz¹, Benjamin Hillman², Andrew Bradley², Gautham Bisht³, Peter Caldwell¹, Oksana Guba², Walter Hannah¹, Noel Keen⁴, Wuyin Lin⁵, Mathew Maltrud⁶, Luke Van Roekel⁶, Erika Roesler², Mark Taylor², Paul Ullrich⁷, Jonathan Wolfe⁶, Charlie Zender⁸, Chengzhu Zhang¹, Xue Zheng¹

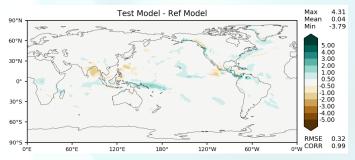
¹LLNL, ²SNL, ³PNNL, ⁴LBL, ⁵BNL, ⁶LANL, ⁷UC Davis, ⁸UC Irvine

DOE ESMD/E3SM Annual All-Hands Meeting October 26-29, 2020

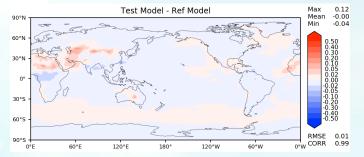
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL-PRES-815833

Background

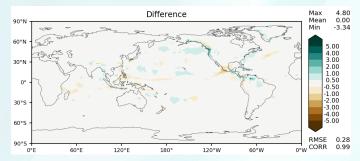
- In E3SMv1, we established the regionally refined model (RRM) as an efficient tool to develop the high-res atmosphere model (Tang et al., 2019).
- Need to retune RRM due to poor scale-aware atmospheric physics
- E3SMv2 focuses on the North American (NA) RRM and will release NA RRM production simulations.


Atmosphere RRM configurations in regular use

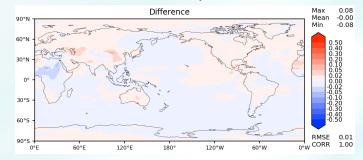
Improved atmosphere RRM strategies for E3SMv2

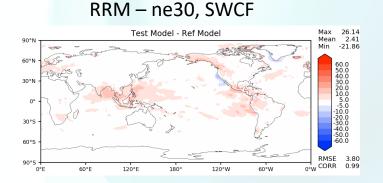

- Hybrid time steps (high-res dycore + low-res physics) for RRM
- No (minimum) retuning required for RRM in addition to low-res model
- theta-I dycore, Semi-Lagrangian tracer transport, and pg2 physics grid increase the throughput by 2x (3 years/day on 113 cori-knl nodes).
- Becomes possible to release RRM DECK with E3SMv2

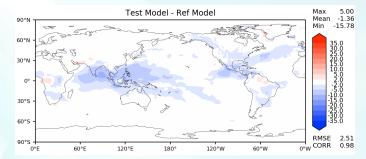
Smaller RRM-ne30 diff with hybrid time stepping (RRMdt)

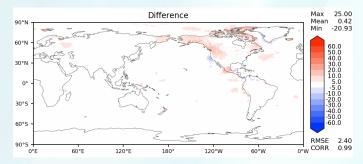


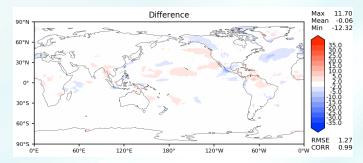
RRM – ne30, PRECT


RRM – ne30, AODVIS

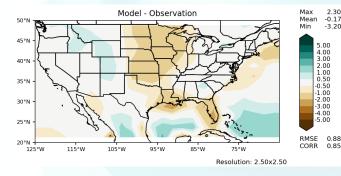

RRMdt – ne30, PRECT

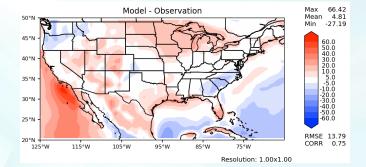

RRMdt – ne30, AODVIS

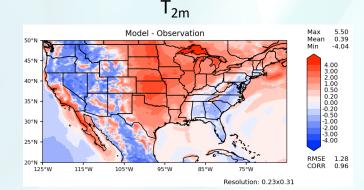

Smaller RRM-ne30 diff with hybrid time stepping (RRMdt)


RRM – ne30, LWCF

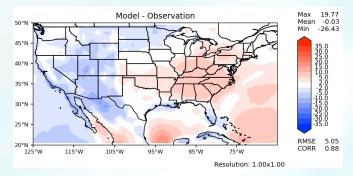
RRMdt – ne30, SWCF


RRMdt – ne30, LWCF


- Over low-res grids, the differences are much smaller with RRMdt.
- Over high-res grids, the differences are somewhat similar.


RRMdt CONUS results vs. observations, summertime

PRECT



SWCF	S١	N	'C	F
------	----	---	----	---

Summertime warm, dry biases at the central US seem similar to Tang et al., 2019.

Summary

- With the hybrid time stepping, we unified the low-res and RRM physics development for the E3SMv2 atmosphere model.
- The North American (NA) atmosphere RRM mimics the low-res model biases at coarser grids, and the high-res model biases at finer grids.
- The new theta-I dycore, Semi-Lagrangian tracer transport, and pg2 physics grid doubled the RRM throughput, enabling the NA RRM DECK simulations.
- The coupled NA RRM was configured to study resolution impacts in coupling.